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 CHAPTER 5  SERIES SOLUTIONS 
1 Power Series Method 

 

1.1 Power Series 

 

∑
m=0

∞

  am ( x − x0 )m   =   a0 + a1 ( x − x0 ) + a2 ( x − x0 )2 + . . . 

where, a0, a1 , . . ., are constants (coefficients);  x0 is a constant (center) 
 

Taylor's Formula 

f(x)   =  ∑
m=0

N

   m!   ( x − x0 
f(m)(x0) )m + RN (x − x0) 

If (x − x0) is sufficiently small, RN (x − x0) → 0 as N → ∞, then, we say f(x) is analytic at x0, and 

f(x)   =   ∑
m=0

∞

   m!   ( x − x0 
f(m)(x0) )m 

Taylor Series 
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When          x0  =  0  ⇒  Maclaurin Series 

 

Examples:  

ex   =   ∑
m=0

∞

    
xm

 m!   = 1 + x + 
x2

 2!    +   
x3

 3!   + . . . 

sin x   =  ∑
m=0

∞

      ( 2 m + 1 ) !  
 (−1)m x2m+1 

 
3 5 7

3! 5! 7!
x x xx= − + − +  

cos x   =   ∑
m=0

∞

     (2m)! 
 (−1)m x2m 

 
2 4 6

1
2! 4! 6!
x x x

= − + − +  
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1.2 Basic Idea of the Power Series Method 

 

 

In the previous discussion, the linear differential equations with constant coefficients were solved and shown to have solution for  

0y ay by′′ ′+ + =  

They can be anyone of the following 3 forms: 

( )

1 2
1 2

1 2

1 2

( )

cos sin

m x m x

mx

x

y A e A e
y A A x e
y e A x A xα β β

= +

= +

= +

 

But, exponential, sine and cosine functions can be expressed in terms of Maclaurin series or Taylor series expanded around 
zero.  
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[Example] y'' + y   =   0 

[Solution] Assume 

 y   =   ∑
m=0

∞

  am xm   =   a0 + a1 x + a2 x2 + . . . 

y'   =   ∑
m=1

∞

  m am xm-1   =   a1 + 2 a2 x + 3 a3 x2 +  . . .;           y''   =    ∑
m=2

∞

 m ( m - 1 ) am xm-2   =   2a2 + 6 a3 x + 12 a4 x2 +  . . . 

Since y'' + y   =   0 

⇒ (2a2 + 6a3 x + . . .) + (a0 + a1 x + a2 x2 + . . .)   =   0         or (2a2 + a0) + (6a3 + a1) x + (12a4 + a2) x2 + . . .   =   0 

Since 1, x, x2, . . ., xn are linearly independent functions, we have 

 2a2 + a0   =   0 coefficients of x0 
 6a3 + a1   =   0 coefficients of x1 
 12a4 + a2   =   0 coefficients of x2 

∴    (1) a2, a4, a6, . . ., can be expressed in terms of a0 and (2) a3, a5, a7, . . ., can be expressed in terms of a1 

where a0 and a1 are arbitrary constants.  After solving the above simultaneous equations, we have 

 a2   =    − 
 a0 
2    = −   

 a0 
2! ;    a3   =   −  

 a1 
6    = −   

 a1 
3! ;    a4   =   . . .   =   

 a0 
4!   ; ... 

thus y   =   a0 







 1  −  
x2

  2!    +  
x4

  4!    −  ...      + a1 







 x  −  
x3

  3!    +  ...    = a0 cos x + a1 sin x 
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 Since every linear differential equation with constant coefficients always possesses a valid series solution, it is natural to expect the 
linear differential equations with variable coefficients to have series solutions too.   

 Also, since the majority of series cannot be summed and written in a function form, it is to be expected that some solutions must be 
left in series form. 

  

y'' + p(x) y' + q(x) y   =   0 

where p(x) and q(x) are expressed in polynomials.   

 

We assume 

 y   =   ∑
m=0

∞

  am xm   =   a0 + a1 x + a2 x2 + . . . 

 y'   =   ∑
m=1

∞

  m am xm-1   =   a1 + 2 a2 x + . . . 

 y''   =   ∑
m=2

∞

  m ( m − 1 ) am xm-2   =   2 a2 + 3 × 2a3 x  + . . . 

(1) Put y, y' and y'' into the differential equation  

(2) Collect terms of x0, x1, x2, . . .,  

(3) Solve a set of simultaneous equations of a0, a1, a2, .... 
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2 Theory of Power Series Method 
 

2.1 Introduction 

Power Series: 

S(x)   =   ∑
m=0

∞

  am ( x − x0 )m   =   a0 + a1 ( x − x0 ) + a2 ( x − x0 )2 + . . . (1) 

Partial Sum: 

Sn(x)   =   a0 + a1 ( x − x0 ) + a2 ( x − x0 )2 + . . . + an ( x − x0 )n                                                               (2) 

Remainder: 

Rn(x)   =   an+1 ( x − x0 )n+1 + an+2 ( x − x0 )n+2 + . . .                                                                                (3) 

 

Note that Rn   =   S − Sn     or | Sn − S |   =   | Rn | 

Convergence:    

Definition 1:  If lim
n→∞

  Sn(x1)   =   S(x1),  then the series (1) converges at x   =   x1  and 1 0x x≠  

Definition 2: If the series converges, then for every given positive number ε (no matter how small, but not zero), we can find a 
number N such that| Sn − S | < ε for every n > N 
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2.2 Radius of Convergence 

 

Example 1: 

 ∑
m=0

∞

  xm   =   1 + x + x2 + . . .  ⇒       |x| > 1  divergent;  |x| < 1 convergent 

Example 2: 

 ∑
m=0

∞

   
  xm  
m!   =   1 + x + 

  x2  
2!   + . . .  (   =   ex )    ⇒     convergent for all x.   

 

If a series converges for all x in  

 | x − x0 | < R 

and diverges for 

 | x − x0 | > R  (0 < R < ∞) 

then   R   =   radius of convergence 

R   =   ∞  if series converges for all x.   
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R can be calculated by the following formula: 

 R   =   
1

 lim
m→∞






am+1

am
 
    (Ratio Test) 

 

Ratio Test 

 ρ   =   lim
m→∞

 








 
am+1 ( x − x0 )m+1 

am ( x − x0 )m   =  lim
m→∞

 








 
am+1 ( x − x0 ) 

am   1
0 lim m

m
m

ax x
a

+

→∞
= −  

if ρ   >   1 divergent 
 ρ   <   1 convergent 
 ρ   =   1 test fails (i.e., inconclusive) 

 

Since ρ  <  1 : convergence, we need    1
0 lim m

m
m

ax x
a

+

→∞
− =  lim

m→∞
 






 

am+1 ( x - x0 ) 
am    < 1 

| x - x0 | < 
1

 lim
m→∞






am+1

am
 
    = R   

(radius of convergence) 
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[Example] ex   =   1 + x + 
  x2  

2!   + . . .   =    ∑
m=0

∞

   xm  
m!     

 ρ    =   lim
m→∞






am+1x

am
  = lim

m→∞





 

x/(m+1) !
1/m !     =  lim

m→∞
 

x
m+1   =  0  <  1 

⇒ The series converges, i.e.,  

R   = 
( ) ( )1/ !lim lim 1

1/ 1 !m m

m m
m→∞ →∞

= + =
+

  ∞,  i.e., converges for all x. 

 

[Example] ∑
m=0

∞

  xm   =   1 + x + x2 + x3 + . . . 

 ρ   =   lim
m→∞






 

 x am+1 
am

    =  lim
m→∞

  | x |   =   | x | 

thus,  converges for  | x | < 1 
 diverges for   | x | > 1 

 test fails for               | x | = 1 

Radius of convergence 

 | x | <  R   =   1lim 1
1m→∞

=  , i.e., converges for all x in | x | < 1.   

In fact, this series converges to  
1

 1 − x    for − 1 < x < 1. 
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[Example] ∑
m=0

∞

  m! xm   =   1 + x + 2x2 + 6x3 + . . . 

 ρ   =   lim
m→∞






 x am+1 

am
   =  

x ( m + 1 ) !
m !    =  x ( m + 1 )   =    ∞  >  1 

1

1lim lim 0
1

m

m m
m

aR
a m→∞ →∞

+

= = =
+

  Thus, this series diverges for all x ≠ 0. 

 

[Example]   ∑
m=0

∞

   
 8m 

  
  (−1)m  

 x3m       

This is a series in powers of t = x3 with coefficients am = 
  (−1)m  

 8m 
   ,  so that   ρ   =   lim

m→∞





 

 t am+1 
am

    =  
| t |

 8     

thus, converges for 

 
 | t | 

8    < 1        or       | t | <  8      or      
1

lim 8m

m
m

aR
a→∞

+

= = ,  i.e.,  | x | < 2 
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2.3 Properties of Power Series 

 

(1) A power series may be differentiated term by term (Term-wise Differentiation). 

y(x)   =    ∑
m=0

∞

  am ( x − x0 )m,   |x − x0| < R and R > 0    ⇒    y'(x)   =    ∑
m=0

∞

 m am ( x − x0 )m-1  = ( ) 1
0

1

m
m

m
ma x x

∞
−

=

−∑  

(2) Two power series may be added term by term (Term-wise Addition). 

f(x)   =    ∑
m=0

∞

  am ( x − x0 )m      and        g(x)   =     ∑
m=0

∞

 bm ( x − x0 )m    ⇒    f(x) + g(x)   =    ∑
m=0

∞

  )( am + bm ) ( x − x0 m 

 

(3) Two power series may be multiplied term by term (Term-wise Multiplication). 

 ⇒       f(x) g(x)   =   ∑
m=0

∞

  )( a0 bm + a1 bm−1 + . . . + am b0 ) ( x − x0 m 

(4) Vanishing of all Coefficients (Linearly Independence). 

f(x)   =    ∑
m=0

∞

  am ( x − x0 )m   =    0  for all x in |x − x0| < R      ⇒       am   =   0  for all  m. 
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Let's ask ourselves a question:  Can all linear second-order variable coefficient differential equations be solved by power series 
method?  Let us answer this question by the following illustration: 

 

[Example] Solve the following Euler equations 

 x2 y'' + a x y' + b y   =   0 

where (i) a   =   − 2,  b  =   2 
 (ii) a   =   − 1,  b  =   1 
 (iii) a   =   1,  b  =   1 

[Solution] we assume 

 y   =   ∑
m=0

∞

  cm xm ; y'   =     ∑
m=1

∞

 m cm xm-1=    ∑
m=0

∞

  m cm xm-1;  

 y''    =   ∑
m=2

∞

  m ( m − 1 ) cm xm-2=    ∑
m=0

∞

 m ( m − 1 ) cm xm-2 

∴ x2 y'' + a x y' + b y = 

  ∑
m=0

∞

  [m ( m − 1 ) + a m + b ] cm xm   =   0 

Note that m ( m − 1 ) + a m + b = 0 is the characteristic equation for Euler equation. 
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Case (i) a   =   − 2,  b   =   2 

⇒ ∑
m=0

∞

   ( m2 − 3 m + 2 )  cm xm   =   0 

∴ ( m2 − 3 m + 2 ) cm   =   0       or ( m − 2 ) ( m − 1 ) cm   =   0 

⇒ cm   =   0 for all m ≠ 1 or 2     ( )0 3 4 0c c c= = = =  

⇒ y   =   c1 x + c2 x2             Same if solved with characteristic equation!!! 

 

Case (ii) a   =   − 1,  b   =   1 

⇒ ∑
m=0

∞

  ( m2 − 2 m + 1 )  cm xm   =   0 

∴ ( m − 1 )2 cm   =   0 

⇒ cm   =   0  for all m ≠ 1 

⇒ y   =   c1 x    ∴In this case, power series method yields only one solution: y = c1 x.   

We need another linearly independent solution to get the general solution of the differential equation. 

⇒ Reduction of order:  let y2   =   x u         ⇒ x3 u'' + x2 u'   =   0 

⇒ u   =   c ln|x|         ⇒ y   =   A x + B x ln|x|  (Same as before!!!) 
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Case (iii) a   =   1,  b   =   1 

⇒ ( m2 + 1 ) cm   =   0 

⇒ cm   =   0  for all m 

i.e., the power series method fails completely, but why?? 

 

By the way, the general solution of Case (iii ) is  

 y   =   A cos(ln|x|) + B sin(ln|x|) 
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2.4 Regular Point and Singular Point 

Analytic Function:  If g is a function defined on an interval I, containing a point x0, we say that g is analytic at x0  if g can be 
expanded in a power series about x0 which has a positive radius of convergence. 

 

A function ƒ is real analytic on an open set D in the real line if for any x0 in D 
one can write 

 

in which the coefficients a0, a1, ... are real numbers and the series is convergent to ƒ(x) 
for x in a neighborhood of x0. 

Alternatively, an analytic function is an infinitely differentiable function such 
that the Taylor series at any point x0 in its domain 

 

converges to ƒ(x) for x in a neighborhood of x0 (in the mean-square sense). The set of 
all real analytic functions on a given set D is often denoted by Cω(D). 
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 Any polynomial in x is analytic for all x.   

 Any rational function (ratio of polynomials) is analytic for all values of x which are not zeros of the denominator 
polynomial. 

Question:  Are ex,  x  , and   
1

 x   analytic at x   =   0? 

 

Theorem (Existence of Power Series Solutions) 

If the function p, q, r in 

 y'' + p(x) y' + q(x) y   =   r(x) 

are analytic at 0x x= , then every solution y(x) of the above equation is analytic at 0x x=  and can be represented by a power series of x - 

x0 with radius of convergence 0R > , i.e.  y   =   ∑
m=0

∞

  am ( x − x0 )m 

 

Definition:  Regular Point and Singular Point 

We call x   =   0 a regular point (or ordinary point) of the differential equation 

 y'' + p(x) y' + q(x) y   =   0 

when both p(x) and q(x) are analytic at x = 0.   

If x = 0 is not a regular point, it is called a singular point of the differential equation. 
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[Example]  

x y'' + 2 y' + x y   =   0 

 y'' + 
  2  
 x    y' +  y   =   0 

⇒ x   =   0 is a singular point!   ∴ may give some trouble in power series method. 

 

Although it is inappropriate, we nonetheless assume       y   =   ∑
m=0

∞

  cm xm 

The differential equation becomes 

 ∑
m=2

∞

  m ( m − 1 ) cm xm-1 +  ∑
m=1

∞

 2 m cm xm-1 + ∑
m=0

∞

  cm xm+1   =   0 

Let     1   m k= + ⇒     ∑
m=2

∞

  m ( m − 1 ) cm xm-1   =    ∑
k=1

∞

 ( k + 1 ) k ck+1 xk 

Let     1   m k= + ⇒    ∑
m=1

∞

  2 m cm xm-1   =    ∑
k=0

∞

 2 ( k + 1 ) ck+1 xk  =  2 c1 + ∑
k=1

∞

  2 ( k + 1 ) ck+1 xk 

Let     1   m k= − ⇒     ∑
m=0

∞

  cm xm+1   =    ∑
k=1

∞

 ck-1 xk 
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Thus we have 

 2 c1 + ∑
k=1

∞

  {[ ( k + 1) k + 2 ( k + 1 )] ck+1 + ck-1 }  xk  =  0     or 2 c1  +   ∑
k=1

∞

 { ( k + 1 ) ( k + 2 ) ck+1 + ck-1 } xk  =  0 

∴ c1   =   0 

 ck+1   =   
− ck-1

 ( k + 2 ) ( k + 1 )   for k ≥ 1 

∴ c3   =   c5   =   c7   =   . . .   =   0 

 c2   =   −  
c0

 3!   c4   =      
c0

 5! 

∴  y   =   c0 







 1 −  
x2

  3!   + 
x4

  5!   + . . .   = c0 
 sin x 

x   

Only one solution is obtained!  The other linearly independent solution can be obtained by the method of reduction of 
order: 

⇒ y2   =   u 
 sin x 

x       ( )
12

1

1 sin 2 where  and 
p x dx xu e y p

y x x
− ∫′ = = = 

 
     ⇒ y2   =   

 cos x 
x     (Exercise!) 

∴ y   =   A 
 sin x 

x    + B   
 cos x 

x

Note that    
 cos x 

x    =  x-1   4!   + . . . 








 1 −  
x2

  2!   + 
x4

 .  

This suggests that we may try y   =   xr (c0 + c1 + c2 x2 + . . .)  in the first place to obtain the second linearly independent 
solution. 



Series - 19 

3 Frobenius Method 
 

3.1 General Concepts  

 

 y'' + p(x) y' + q(x) y   =   0 

 

If p(x), q(x) are analytic at x = 0        ⇒ x = 0  is a regular point, two linearly independent exist .  ⇒   y = ∑
m=0

∞

  am xm 

If p(x), q(x) are not analytic at x = 0          ⇒ singular point 

For x = 0 is a singular point, rewrite the differential equation in the following form: 

 y'' + p(x) y' + q(x) y   =  y'' + 
 b(x) 

x   y' + 
 c(x) 

x2   y   =    0 

If b(x), c(x) analytic at x =0   ⇒ regular singular point, at least one solution exist with the following form 

⇒ y = xr ∑
m=0

∞

  am xm   where r is a parameter which need to be determined.  It can be positive or negative. 

If b(x), c(x) not analytic at x=0   ⇒    irregular singular point, a non-trivial solution may or may not exist. 
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Theorem 1 (Frobenius Method)  

Any differential equation of the form 

 y'' + 
 b(x) 

x   y' + 
 c(x) 

x2   y   =    0 

where b(x) and c(x) are analytic at x = 0 ( a regular singular point) , has at least one solution of the form 

 y   =   xr ∑
m=0

∞

  amxm   =   xr ( a0 + a1x + a2 x2 +  ... ),  

where a0 ≠ 0 and r may be any number ( real or complex ). 

 

 

x=0 regular singular point!!! 
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3.2 Indicial Equation 

 

 y''  +  
  b(x)  

x   y'  +  
  c(x)  

x2   y   =    0          or x2 y'' + x b(x) y' + c(x) y   =   0 

Since b(x) and c(x) are analytic, i.e., 

 b(x)   =   b0 + b1 x + b2 x2 + . . . 

 c(x)   =   c0 + c1 x + c2 x2 + . . . 

We let  

y   = xr ∑
m=0

∞

  am xm = ( )2
1 20

rx a xa a x+ + +  

y'   =  ∑
m=0

∞

  ( m + r ) am xm+r-1   =  xr-1   ∑
m=0

∞

 ( m + r ) am xm   

 = xr-1 [ r a0 + ( r + 1 ) a1 x + . . .  ] 

y''   =    ∑
m=0

∞

  ( m + r ) ( m + r − 1 ) am xm+r-2  = xr-2    ∑
m=0

∞

 ( m + r ) ( m + r − 1 ) am xm 

  =  xr-2 [ r ( r − 1 ) a0 + ( r + 1 ) r a1 x +  . . . ] 

 



Series - 22 

 

 

Put y, y', y'', b(x), c(x) into the differential equation and collect terms of xp, we have (for xr terms) 

 [ r ( r − 1 ) + b0 r + c0 ] a0   =   0 

Since a0 ≠ 0, we have 

 r ( r − 1 ) + b0 r + c0    =   0 Indicial Equation !!! 

Two roots for r: 

 one root  for   y1 = xr ∑
m=0

∞

  am xm 

 another  root ⇒ Theorem 2 for y2 
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Theorem 2   (Form of the Second Solution) 

 

Case 1:  r1 and r2 differ but not by an integer 

y1   =   xr1 ( a0 + a1 x + a2 x2 + . . . )  

y2   =   xr2 ( A0 + A1 x + A2 x2 + . . . )  

Case 2:  r1 = r2 = r,   r =  
1

  2   ( 1 − b0 )  

y1   =   xr ( a0 + a1 x + a2 x2 + . . . ) 

y2   =   y1 ln x +  xr (A1 x + A2 x2 + . . . ) 

Case 3:  r1 and r2 differ by a nonzero integer, where r1  >  r2 

y1   =   xr1 ( a0 + a1 x + a2 x2 + . . . )  

y2   =   k y1 ln x +  xr2 ( A0 + A1 x + A2 x2 + . . . )  

where r1 − r2 > 0  and k may or may not be zero!!! 

 

Note that in Case 2 and Case 3, the second linearly independent solution y2 can also be obtained by reduction of order 
method ( i.e., by assuming y2 = u y1 ). 
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Case 1:  r1 and r2 differ but not by an integer 

 

[Example] y'' + 
1

  4 x    y' +  
1

  8 x2  
 y   =   0,   x > 0  (Euler Equation) 

[Solution] y   =   xr ( a0 + a1 x + a2 x2 + . . .  )   =   xr ∑
m=0

∞

  am xm   =   ∑
m=0

∞

 am xm+r 

 y'    =  ∑
m=0

∞

  (m+r) am xm+r-1 

 y''     =  ∑
m=0

∞

  (m+r) (m+r-1) am xm+r-2 

⇒ ∑
m=0

∞

  am  4  ( r + m ) + 
1
 8   







 ( r + m ) ( r + m − 1 ) + 

1
 xr+m-2   =   0 

For m =  0,  am ≠ 0   ( 0 0  by Theorem 1a ≠ ), we have the indicial equation: 

 r ( r − 1 ) +  
1

  4    r  +   
1

  8    =  0    ⇒   r1  = 1/4  and  r2 =  1/2 

Note that in this case, r1 ≠ r2 and r1 − r2 is not an integer. 

2 1
1
4

r r− =  
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For r =
1

  4    ,  we have     y1   =   x1/4 (a0 + a1 x + a2 x2 + . . . ) 

∴ ∑
m=0

∞

  am 4  + m − 1  + 
 1 
4 






 1 

4  + m  + 
1
 8   







 







 1 

4  + m 






 1 

 x  

1
 4  + m - 2 

  =  0       or ∑
m=0

∞

  am  







 m2 - 
 m 
4   x

m - 
 7 
4    =  0 

which is valid for all x > 0.   

Thus, we have      am m 






 m − 

1
 4     =  0  for all m (=0, 1, 2, …) 

⇒   for m   =   0 a0 =  arbitrary nonzero constant 

but  for m   =   1,  2, …  am  =  0 

⇒ y1    =   a0 x1/4 

 

Similarly, for r   =   1/2,  we have  

( by setting y2 = x1/2 ( A0 + A1 x + A2 x2 + A3 x3  + . . .  ,   Exercise! ) 

⇒ y2   =   A0 x1/2 

 

Hence, the general solution is 

 y   =   a0 x1/4 + A0 x1/2  
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[Example]  y'' + 
1

  x    y' +  
1

  x2  
 y   =   0,  x > 0 

[Solution] Letting y =  xr ∑
m=0

∞

  am xm  ,  we have    ∑
m=0

∞

 am [ ] ( r + m ) ( r + m − 1 ) + ( r + m ) + 1   xr+m-2   =   0 

The indicial equation is ( 00, 0m a= ≠ )        r ( r − 1 ) + r + 1   =   r2 + 1   =   0 

∴ r1   =   i,  r2   =   − i,  r1 − r2 =2i  is not an integer. 

For  r   =   i 

 ∑
m=0

∞

  am  [ ] ( i + m ) ( i + m − 1 ) + ( i + m ) + 1  xi+m-2   =   0 

or am [ ( i + m )2 + 1 ]   =   0       or am m ( m + 2 i )   =   0 

⇒ m = 0  a0 ≠ 0,  i.e., a0 is an arbitrary nonzero constant 

 m ≠ 0  am = 0 

⇒ y1   =   a0 xi   ln
0

i xa e= =   a0 [ cos(lnx) + i sin(lnx) ] =  cos(lnx) + i sin(lnx) By taking a0   =   1 

For r  =  − i, we have  (Exercise!)     y2  =  x-i   =  cos(lnx)  − i sin(lnx) 

Since the linear combinations of solutions are also solutions of the linear differential equation, thus, 

y1*   =   
 1 
2   ( y1 + y2 )   = cos(lnx)       and      y2*   =    

 1 
2i   ( y1 − y2 )  =  sin(lnx)        ⇒ y   =   c1 cos(lnx)  + c2 sin(lnx) 
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Case 2,  r1   =   r2   =   r ,  Double Roots 

[Example] y'' + y' + 
1

 4 x2 
  y   =   0,   x > 0 

[Solution] Letting  y   =   xr ∑
m=0

∞

  am xm,   we have 

 ∑
m=0

∞

  am ( r + m ) ( r + m - 1 ) xr+m-2 +  ∑
m=0

∞

 am ( r + m ) xr+m-1+  ∑
m=0

∞

   
1
 4  am xr+m-2   =   0 

1 2    1r m r k m k+ − = + − ⇒ = −  

Since  ∑
m=0

∞

  am ( r + m ) xr+m-1   =    ∑
k=1

∞

 ak-1 ( r + k − 1 ) xr+k-2 =  ∑
m=1

∞

  am-1 ( r + m − 1 ) xr+m-2 

The differential equation becomes 

 a0 




 r ( r − 1 ) + 

 1 
4    xr-2  +   ∑

m=1

∞

    4    + am-1 ( r + m − 1 )  








 am





( r + m ) ( r + m − 1 ) + 

1
 xr+m-2   =   0 

 

The indicial equation is  

 r ( r − 1 ) + 
1
 4    =  0 or  







 r − 

1
 2  

2
  =  0     ⇒   r1  =  r2  =  r  =   

1
 2   
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For  r   =   
1
 2   

 ∑
m=1

∞

    2  ) + 
1
 4    + am-1 ( m − 

1
 2  )  









 am





 ( 

1
 2  + m ) ( m − 

1
 x  

m - 
3
 2  =  0     or ∑

m=1

∞

    








 m2 am + 






 m − 

1
 2   am-1  xm - 

3
 2   =  0 

⇒ am   =   –  
 



 m − 

1
 2   am-1 

m2    for  m  ≥  1     (recurrence formula) 

Hence       a1   =   
 a0 
2  ,   a2   =  ( ) 1 0

2 2

3 / 2 3
2 2 2 2

a a − = − − = ⋅  
 
  3 a0  
 22 22 

 , . . . 

and  y1   =   a0 x
1
 2   







 1 − 

 x 
  2   + 

3
 22  






 x 

  2  
2
 + ...  = 

( )
( )

n

n

x
n
nx 






−∑

∞

= 4!
!2

0
3

2/1
,   x > 0 

Note that we have set a0  =  1 in the above equation. 

 

Approach 1 

Since r  =  r1  =  r2, another solution can be obtained by directly letting 

 y2   =   y1 lnx + xr (A1 x + A2 x2 + ... ) (Exercise!) 

⇒ y2   =   y1 lnx  +  x
1

  2    








 − 
x2

 16   + ...   
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Approach 2 

We can also use the method of reduction of order to produce the second linearly independent solution, y2, by letting 

 y2   =   u y1 

Put into the differential equation, 

 u'' y1  + u' ( 2 y1' + y1 )   =   0        ⇒ 
 u'' 
u'    = − 2  

y1'
y1

 − 1   =   . . . (long division)   =   – 
1

 x    −  
x
 4   + . . . 

i.e., ln u'   =   − ln x −  
x2

 8    +  . . .         or u'   =    
1
 x  exp 









 − 
  x2  
 8  + . . .    =  . . .   

By expanding the exponential function in Taylor series and then integrating 

 u =  ln x  −  
x2

 16     +  . . . 

⇒ y2   =   y1 u   =   y1 







 ln x − 
x2

  16   + . . .  =  y1 ln x  +   16   + . . . x 








 − 
x2

  

 

Both are tedious and intractable! 

 

[Exercise] x y'' + ( 1 − x ) y' − y   =   0, x > 0 

 



Series - 30 

Case 3:  r1 and r2 differ by an nonzero integer,  r1  >  r2   

[Example] x2 y'' + x y' + 






 x2 − 

 1 
  4     y   =   0  (Bessel's equation of order 1/2) 

[Solution] Put       y   =   xr ∑
m=0

∞

  am xm   =    ∑
m=0

∞

 am xm+r 

The differential equation becomes 

 ∑
m=0

∞

  am ( r + m ) ( r + m − 1 ) xr+m-2  +  ∑
m=0

∞

 am ( r + m ) xr+m-2 −  ∑
m=0

∞

   
 1 
4 am xr+m-2  + ∑

m=0

∞

  am xr+m   =   0 

After substituting ∑
m=2

∞

  am-2 xr+m-2 for the last term of the lhs of the above equation, we have 

a0 




 r ( r − 1 ) + r −  

 1 
  4     xr-2 +  a1 




 r ( r + 1 ) + ( r + 1 ) − 

 1 
  4     xr-1+  ∑

m=2

∞

    4    + am-2  








 am 






 ( r + m ) ( r + m − 1 ) + ( r + m ) − 

 1 
 xr+m-2  =  0 

Thus, we have the indicial equation: 

 r ( r − 1 ) + r − 
 1 
  4     =  2 1

4
r − = 0              or r1  =  

 1 
  2    r2   =  −    

 1 
  2  

Note that r1 − r2  =  1  is an integer!!! 

Note also that, when m=1,  ( ) ( )2 2 2
1 1 1 1 11 1 0
4 2 2 2 4

r r r   + + + − = − + − =  
  

! 
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For  r1  =  
 1 
  2      ⇒     2 a1 x-1/2 +  ∑

m=2

∞

  [ ] am ( m2 + m ) + am-2   x  
m - 

 3 
2   = 0 

∴ a1  =  0   and   am  =  −  
am-2

 m ( m + 1 )     for  m  ≥ 2          ⇒ y1   =     
 sin x 

x 

 

For  r2  =  −  
 1 
  2   , both a0 and a1 are arbitrary! 

 ∑
m=2

∞

   [ ] am ( m2 − m ) + am-2  x
m – 

 5 
2    =  0 

∴ am   =   –  
am-2

  m ( m − 1 )    

or a2   =   − a0/2!  a4   =   a0/4!  a6   =   − a0/6! 

 a3   =   − a1/3!  a5   =   a1/5! . . . 

⇒ y2   =   
1

 x 
  ( a0 cos x  + a1 sin x )         ∴The linearly independent solution is    

cos x
 x 

(Alternatively, the linearly independent solution y2 can also be obtained by reduction of order method.) 

⇒ y   =   A  
sin x
 x 

   +  B    
cos x
 x 

 ⇒ Note that k=0 in this case! 
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[Example] x2 y''  +  x y'  +  (x2 − 1) y   =   0  (Bessel's equation of order 1) 

[Solution] Letting     y   =   xr ∑
m=0

∞

  am xm, we have 

a0 [ r ( r − 1 ) + r  − 1 ] xr-2  +  a1[ r ( r + 1 ) + ( r + 1 ) − 1] xr-1 +  ∑
m=2

∞

   ( am ( ( r + m ) ( r + m − 1 ) + ( r + m ) − 1 ) − am-2 ) xr+m-2=  0 

∴ The indicial equation is     r ( r − 1 ) + r − 1   =   r2 − 1   =   0     ∴     1 21           1r r= = −  

( ) ( )
1 2

2 2 2

2
1 1 1

0
1 0

r r
r r r

k

− =

+ + + − = − ≠

≠∴

 

 

For  r  =  1,  we have      3 a1  +  ∑
m=2

∞

   ( am ( m2 + 2 m ) + am-2 ) xm-1   =   0 

∴ a1   =   0     and      am   =   −  
am-2

  m  ( m + 2 )    for  m ≥ 2 

⇒ y1(x)   =   x 








 1 − 
1

  1! 2!  




 x 

2
2
 + 

1
  2! 3!  




 x 

2
4
  − . . .   
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For  r   =  − 1,  we have      − a1 x-2  +  ∑
m=2

∞

  { am ( m2 − 2 m ) + am-2 } xm-3   =   0 

⇒ a1   =   0   and     m ( m − 2 ) am  =  - am-2 for m ≥ 2 

But for m  =  2,  we have  0  =  a0  which is not true.   Thus we can not obtain the second linearly independent solution by 

setting  y =  xr ∑
m=0

∞

  am xm    with r   =  − 1. 

                        Approach 1 

From the theorem, we need to directly assume that the second solution is of the form: 

 y2   =   k y1 lnx  + xr2 (A0 + A1 x + A2 x2  + . . . ) =   
 1 
4  y1 ln x  −  

 1 
2    x-1  +   

x
 16   +  . . .  (Exercise!) 

Approach 2 

Note that the second linearly independent solution can also be obtained by the method of reduction of order (Exercise!): 

 y2   =   u y1      ⇒   
 u'' 
u'    =   

 − 2 y1' 
 y1

  −  
 1 
x    =   

 − 3 
    x   +  

 x 
  2     +  . . . 

 ∴ ln u'   =   − 3 ln x  +  
x2

  4      +  . . .      

⇒    u'   =   x-3 exp 








 
x2

  4     + . . .     =   x-3 +  
1
 4  x-1  +  . . .    or u   =   –  

1
 2   x

- 2  +   
1
 4  ln x  +  . . . 

[Exercise] x y'' + (x − 1) y'  − 2 y   =   0 
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4 Legendre's Equation 

4.1 Legendre's Differential Equation 

 

( 1 − x2 ) y''  −  2 x y'  +  n ( n + 1 ) y   =   0 

 

where n  is any non-negative real number.  Since n(n+1) is unchanged when n is replaced by –(n+1), then  

(1) solution of n = n’ (where 0n′ ≥ ) is the same as n = - (n’+1);  

(2) solution of n = - n” (where 1n′′ ≥ ) is the same as n = n”-1.  

The above equation can be written as        y''  −  
2 x

  1 − x2  
  y'  +  

 1 − x2 
  

  n ( n + 1 )  
 y   =   0 

But 
1

 1 − x2 
   = 1  +  x2  +  x4  +  . . .                  which is analytic at x  =  0 (regular point!).   

Therefore, we can solve the above equation by assuming 

y   =   ∑
m=0

∞

  am xm 
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⇒  Recurrence formula 

am+2   =   −  
 ( n − m ) ( n + m + 1 ) 

 ( m + 2 ) ( m + 1 )   am ,   m   =   0, 1, . . .  (Exercise!) 

or a0 a1 

 a2   =   −  
  n ( n + 1 )  

 2!   a0 a3   =   −  
  ( n − 1 ) (n + 2 )  

 3!   a1 

 a4   =   
  ( n − 2 ) n ( n + 1 ) ( n + 3 )  

4!   a0  

  a5   =   
  ( n − 3 ) ( n − 1 ) ( n + 2 ) ( n + 4 )  

5!   a1 

 . . .  

∴ The general solution is y   =   a0 y1 + a1 y2 

where  

2 4 6
1

( 1) ( 2)( 1)( 3) ( - 2)( - 4)( 1)( 3)( 5)( ) 1
2! 4! 6!

n n n n n n n n n n n ny x x x x+ - + + + + +
= - + - +  

3 5 7
2

( 1)( 2) ( 1)( 3)( 2)( 4) ( 1)( 3)( 5)( 2)( 4)( 6)( )
3! 5! 7!

n n n n n n n n n n n ny x x x x x− + − − + + − − − + + +
= − + − +  
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If n  =  0, 1, 2, . . . (non-negative integer), then one of the above two solutions is a polynomial! 

2 4 6
1

( 1) ( 2)( 1)( 3) ( - 2)( - 4)( 1)( 3)( 5)( ) 1
2! 4! 6!

n n n n n n n n n n n ny x x x x+ - + + + + +
= - + - +  

3 5 7
2

( 1)( 2) ( 1)( 3)( 2)( 4) ( 1)( 3)( 5)( 2)( 4)( 6)( )
3! 5! 7!

n n n n n n n n n n n ny x x x x x− + − − + + − − − + + +
= − + − +  

( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 1

1
2

2 2

0 2,4,6,
2 4 61 1 1 1

1 3 5 1
1 1,3,5,

2 4 6 ( 1)1 1 1 1
1 3 5

n

n

n n
ny y

n
n n

ny y
n

−

= =
⋅ ⋅

= = −
⋅ ⋅ −

= =
⋅ ⋅ −

= = −
⋅ ⋅













 

Thus, let 

 y   =   c1 Pn(x) + c2 Qn(x) 

where Pn(x)  =  Legendre polynomials [It is desirable that Pn(1)  =  1] 
  

Qn(x)  =  Legendre functions of the second kind converges in -1<x<1, but Qn(±1)  =  unbounded (This is due to the fact 
that the Legendre equation is not analytic at x=+1 and x=-1!) 
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4.2 Legendre Polynomials Pn(x) 

 

Since ( )( )
( )( )2

1
2 1m m

n mn
a a

m
m

m+

+ +
= −

+ +
−

    for m   =   0, 1, . . . 

If n  =  non-negative integer, 

 am+2  =  0  for m  =  n          2 0na +⇒ =  

i.e.,  an+2  =  an+4  =  an+6   =   . . .    =   0 

when n   =   even,      y1  ⇒  polynomial of degree n 
 n   =   odd,        y2  ⇒  polynomial of degree n 
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These polynomials, each divided by an appropriate constant, are called the Legendre polynomials Pn(x), which have the value Pn(1) = 1.  
In other words, let  

1

1

2

2

( ) when  is even
(1)

( )
( ) when  is odd
(1)

n

y x n
y

P x
y x n
y


= 



 

 Or, we can choose the coefficient of xn in the Legendre polynomials Pn(x)  as 

 an   =   1 if   n   =   0 

 an   =   
 ( 2 n ) !

 2n ( n ! )2 
1 3 5 (2 1)

!
n

n
⋅ ⋅ −

=
  ;     if   n   =   1, 2, . . . 

Then, we can obtain the other coefficients in Pn(x) with the recurrence formula 

 an-2   =
( 1)

2(2 1) n
n n a

n
−

−
−

=   
− ( 2 n − 2 ) !

 2n ( n − 1 ) ! ( n − 2 ) ! 
  

 . . . 

 an-2m   =   (−1)m 
 ( 2 n − 2 m ) !

  2n m ! ( n − m ) ! ( n − 2 m ) !  
  

Then, the Legendre polynomial of degree n, Pn(x) is given by 

Pn(x)   =  ∑
m=0

M

   ( − 1 )m 
  2n m ! ( n − m ) ! ( n − 2 m ) ! 

 
 ( 2 n − 2 m ) !

 xn-2m         where M   =   
when  is even

2
1 when  is odd

2

n n

n n



 −

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[Example] 

( ) ( ) ( ) ( )2 3 4 2 5 3
0 1 2 3 4 5

1 1 1 1( ) 1,      ( ) ,      ( ) (3 1),     ( ) (5 3 ),      35 30 3 ,      63 70 15
2 2 8 8

P x P x x P x x P x x x P x x x P x x x x= = = − = − = − + = − +  

 

In all cases, Pn(1)   =   1,   and  Pn(−1)   =   (−1)n. 
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4.3 Legendre Functions of the Second Kind, Qn(x) 

 ( 1 − x2 ) y'' − 2 x y' + n ( n + 1 ) y   =   0,      n   =   0, 1, 2, . . .      ⇒ y   =   c1 Pn(x) + c2 Qn(x) 

The power series Qn(x) can be obtained by the method of reduction of order: 

Let 2 1 2

1 2 1

(1) ( ) when  is odd and ( ) is a polynomial
( ) ( ) ( )

y (1) ( ) when  is even and ( ) is a polynomialn n

y y x n y x
Q x u x P x

y x n y x
−

= = 


 

[ ]
[ ]

2

2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

(1 ) ( ) 2 ( ) ( 1) ( )

(1 ) ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( 1) ( )

( )

            - 2 ( ) ( ) (

n n

n

n

n

n n n n

n n

n n

n n

n

Q x u x P x u x P x
Q x u x P x u x P x u x P x

x Q x xQ x n n Q x

x u x P x u x P x

x u x P

u x P x

u x P x n n u x P xx

′ ′ ′= +
′′ ′′ ′ ′ ′′= + +

′′ ′--  + +

′′ ′ ′= - + +

+

′

′ ++

′

′

[ ]2

2 2

2

2
2 2

(1 ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

(1 ) ( ) ( ) ( ) 2(1 ) ( ) 2 ( ) 0

( )( ) 22
( ) ( ) 1

ln 2ln ( ) ln(1 ) '    
[ ( )]

(

)

1

1

)

(

)

(

n n n

n n n

n

n

n

n
n

n

x u x P x u x P x xu x P x

x u x P x u x x P x xP x

P xu x x
u x P x x

A
u P x x

dxu

c u

x

P x x

A

′′ ′ ′ ′= - + -

′′ ′ ′ = - + --  = 

′ ′′ -
= - + ′ - 

′ ′ = - + - +

=

⇒ =  -

-

( ) ( ) ( ) ( ) ( )

2 2

2 2

)[ ( )]

(1 )[ ( )]

n
n

n n n n n n
n

B
x P x

dxQ x u x P x A P x B P x
x P x

+

= = +
-

∫

∫
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If 0n = , then  

0

0 0 02

( ) 1

( )
1

P x
dxQ x A B

x

=

= +
−∫

 

Also, 

0 1 2

0 1 2

(0) (1) (0) 0

(0) (1) (0) 1

Q y y

Q y y

= =

′′ = =
 

Thus 

Q0(x)      =   
1
 2   ln  







 

 1 + x 
 1 − x  =   x + 

x3

  3      +   
x5

  5     + . . . 

 
If 1n = , then 

1

1 1 12 2

( )

( )
(1 )

P x x
dxQ x A x B x
x x

=

= +
−∫

 

Also, 
1 2 1

1 2 1

(0) (1) (0) 1

(0) (1) (0) 0

Q y y

Q y y

= − = −

′′ = − =  

Thus, 

1 0
1 1( ) ln 1 ( ) 1
2 1

xQ x x xQ x
x

+
= − = −

−
  =    x 









 x + 
x3

  3     +  
x5

  5     + . . .     − 1 

Note the most important property of Qn(x) is that   Qn(±1)   =   unbounded!! 
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4.4 Some Important Properties of Pn(x) 

(1) Values of Pn(x) 

 Pn(1)   =   1 
 Pn(−1)   =   (−1)n 
 Pn(−x)   =   (−1)n Pn(x) 
 n  :  even,  Pn(x) : even function†  
 n  :  odd, Pn(x) : odd function 

 Pn'(−x)   =   (−1)n+1 Pn'(x) 

(2) Rodrigues' Formula  

 Pn(x)   =   
1

 2n n! 
 
dn 
dxn  [ ( x2 − 1 )n ]           

[Exercise]  Show that P2(x)   =   
1

  2   ( 3 x2 − 1 )  

(3) Generating Function for Legendre Polynomials  

 
1

  1 − 2 x t  +  t2  
   =     ∑

n=0

∞

 Pn(x) tn 

(4) Recurrence Formulas  

(i) ( n + 1 ) Pn+1(x)   =   ( 2 n + 1 ) x Pn(x) − n Pn-1(x),  n  =  1, 2, . . . 
(ii) Pn+1'(x) − Pn-1'(x)   =   ( 2 n + 1 ) Pn(x) 

[Exercise]  Starting with P0 = 1, P1 = x, derive P2, P3, P4, . . . according to the recurrence formulas. 
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(5) Integrating Formulas  

(i) ⌡⌠
-1

1

 Pn
2(x) dx   =   

2
 2 n + 1    n   =   0, 1, . . . 

(ii) ⌡⌠
-1

1
  Pm(x) Pn(x) dx   =   0,       m ≠ n,  m, n ∈ N 

(6) Solution to 

 
d2y
 dθ2 

   +  cotθ  
dy
 dθ   + n ( n + 1 ) y   =   0,   n   =   0, 1, . . . 

is y   =   c1 Pn(cosθ) + c2 Qn(cosθ) (x= cosθ and  Exercise! ) 
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Derivation of (4)(i) 
 

( )

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1
2

0
1 3

12 2

1
1

12

1

2 1

0 1

1 1 1

1

Let   , 1 2

1 2 2
2

1 2

Coefficients of 

1 (

 
2 1

2

1

1)n

n
n

n

n
n

n

n
n

n

n n
n n

n n
n

n n n n

n

n

U x t xt t

U P x t

U U x t nP x t
t

x t U U nP x t

x t P x t xt t nP x t

t
xP x P x n

n P

P x nxP x n P x

x n xP x

∞−

=

∞− − −

=

∞− −

=

∞ ∞
−

= =

− −

+

+

= − +

=

∂
= − − + =

∂

− =

+ =

− = − +

⇒

− = + − −

+

+

∑

∑

∑

∑ ∑

( )1nnP x−−
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Derivation of (4)(ii) 

( )

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2

1
2

0
1 3
2 2

1
1
2

1

2

0 1
1

1 1

Let   , 1 2

1 2

Coefficients of  
                            (*)

Differentiating 
2

n
n

n

n
n

n

n
n

n

n n
n n

n
n

nn

n

n n

U x t xt t

U P x t

U tU P x t
x

tU U P x t

t P x t xt t P x t

t
P x P x P xxx P

∞−

=

∞− −

=

∞−

=

∞ ∞

= =

+

+ −

= − +

=

∂ ′= =
∂

′=

= − +

⇒
′ ′= − +′

∑

∑

∑

∑ ∑

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 1

1

1 1

1

(4)(i) wrt ,we have
1 (2 1) (2 1)

Substituting (*) into the above equation yields

2 1 2(2 1)

    2

(2 1) 2

1

n

n n n

n n n

n n n

n n n

x
n P x n P x n nP x

P x P x n

n P x n P

xP x

P x P x P x

P x

x n nP x

+ −

−+ −

+

+

−

′ ′+ = + + + −

′ ′+ = + + + − 

′

′ ′+ −

−⇒ ′ ′ = +

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Selecting the last coefficient in a Legendre polynomial 

 

Let an be the coefficient of xn in Pn(x), i.e., its last coefficient, and an+1 be the coefficient of xn+1 in Pn+1(x), i.e., its last coefficient 

(n+1) Pn+1 - (2n+1) x Pn + n Pn-1   =   0 

The coefficient of xn+1 in LHS (a polynomial of degree n+1) of the above equation is given by 

 (n+1) an+1 - (2n+1) an=0             ∴ an+1   =   
(2n+1)
 n+1   an 

∴     an   =   
2n-1
 n   an-1   =    n-1  

 2n-1 
 n  

2n-3
 an-2   =   ... 

          = ( )( ) ( )( )( )2 1 2 3 5 3 1
!

n n
n

− − 

  a0 

         =  
(2n)!

 2n(n!)2 
  ao 

But a0 is the coefficient of x0 in P0(x)   =   1, we have a0   =   1 

∴ an   =   
(2n-1)(2n-3)...(5)(3)(1) 

 n!   
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5 Bessel's Equations 

5.0 Gamma Function, Γ(α) --- Appendix  

Definition: 

Γ(α)  ≡  ⌡⌠
0

∞

 e-t t
α-1 dt  

Properties: 

(i) Γ(α+1)   =   α Γ(α) 

Γ(α+1)   =   ⌡⌠
0

∞

 e-t t
α
 dt   =  [ − e-t t

α
 ]  

∞
 
0
  +  α ⌡⌠

0

∞

  e-t t
α-1 dt   = α Γ(α) 

(i)' Γ(α)   =   
Γ( α + n )

 α ( α + 1 ) . . . ( α + n − 1 )    ,  n ∈ N 

(ii) Γ(1)  =  1 (from definition!)     Γ(2)  =  1,   Γ(3)  =   2 !, . . .  

 Γ(n)  =   ( n − 1 ) !,   n ∈ positive integer  N 

(iii) Γ(1/2)   =   π     (Exercise!  Hint:  let t1/2 = u,  dt = 2u du) ;  

Γ(3/2)   =   
 π 

2   

(iv) Γ(−n)   =   ± ∞          n ∈ N 

v) Plots of Γ(x): 
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5.1 Bessel's Differential Equation 

x2 y'' + x y' + ( x2 − ν2 ) y   =   0 

where ν ≥ 0.  Note that in this differential equation, p(x) = x/x2 = 1/x is not analytic at x = 0, thus we have to assume 

y   =   ∑
m=0

∞

  am xr+m 

⇒  Indicial Equation: 

( r + ν ) ( r − ν )   =   0        or r1 = ν      and      r2 = − ν 
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(i) Solution for r1 = ν 

 a1   =   0 m = 1 

 am   =   
− 1

 ( m + 2 ν ) m   am-2 m ≥ 2 

thus, a1   =   a3   =   a5   =   . . .   =   0 

and a2   =   − 
a0

 22 ( ν + 1 ) 
  

 a4   =   
a2

 4 ( 2 ν + 4 )    =    
a0

 24 2 ! ( ν + 1 ) (ν + 2 ) 

 . . .  

 a2m   =   
(−1)m a0

 22m m ! ( ν + 1 ) ( ν + 2 ) . . . ( ν + m ) 
       ;   m  =  1, 2,  . . . 

∴ y1(x)   =   a0 x
ν
  +  a0 x

ν
 ∑
m=1

∞
 

(−1)m x2m

  22m m! ( ν + 1 ) ( ν + 2 ) . . . ( ν + m )  
  

We let 

 a0   =   
1

 2
ν
 Γ( ν + 1 ) 

  

⇒ y1(x)   =   Jν(x)   =     x
ν
 ∑
m=0

∞
 

(−1)m x2m

  22m+ν
 m! Γ( ν + m + 1 )  

  

  =  Bessel Function of the First Kind of Order ν 
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For ν = n ≥ 0, n : integer 

 Jn(x)   =   xn ∑
m=0

∞
 

(−1)m x2m

  22m+n m! ( n + m ) !  
  

 

 Note that 

 J0(0)   =   1 
 J1(0)   =   J2(0)   =   . . .   =   0 
 J0(∞)   =   J1(∞)   =   . . .   =   0 

 



Series - 53 
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(ii) Solution for r2 = − ν 

 r1 − r2   =   2ν 


 integer

 
non-integer

  

Recall that  

 y2   =    k y1(x) lnx + xr2 (A0 + A1 x + A2 x2 + . . . )  

 k  =  1,     if      r1 − r2   =   0 

 k may be zero if r1 − r2 ≠ 0, but r1 − r2 ∈ I 

  

 (a) x2 y'' + x y' + [x2 − (1/2)2 ] y   =   0 

r1   =   
1
 2   , r2    =   −   

1
 2   , r1 − r2   =   1,  but     y1   =   

sin x
 x 

   ,  y2   =    
1

 x 
 (a0 cos x + a1 sin x ) , 

In this case, k = 0. 

(b) x2 y'' + x y' + ( x2 − 1 ) y   =   0 

r1 = 1,  r2 = − 1,  r1 − r2 = 2,  and     y1   =   x  ∑
 

 
  am xm  ;  y2   =    

1
 4  y1 ln x − 

1
 2   x

-1 +  . . . 

In this example,  k ≠ 0. 
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In general, substitute r1 = ν into y1 = ∑
m=0

∞

  am xm+r, we have 

 y1 =  Jν(x) 

Similarly, substitution of r2 = − ν  into y2   =   ∑
m=0

∞

  am xm+r gives 

 y2 = J-ν(x) 

Are Jν(x) and J-ν(x) linearly independent? 

 

 

Case 1  ν ∉ N 

Jν(x) and J-ν(x) are linearly independent.  In this case, the general solution of the Bessel differential equation is 

 y   =   c1 Jν(x) + c2 J-ν(x),                ν ∉ N 
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Case 2  ν ∈ N    { 0, 1, 2, ...} 

It can be shown that (Exercise!  Also read p. 230, theorem 2 of the textbook.) 

 J-n(x)   =   (−1)n Jn(x) 

i.e., J-n and Jn are linearly dependent, we need to find the second linearly independent solution by assuming (or by 
method of reduction of order) 

 y2   =    k (ln x) y1  +  xr2 (A0 + A1 x + A2 x2 + ... ) ,  x > 0 

It yields (try this as an exercise!) 

 y2   =   Jn(x) ln x − 
1
 2  ∑

m=0

n-1
 
( n − m − 1 ) !

 m !  ( x
 2 )

2m-n
  

  − 
1
 2  

  hn  
 n!  ( x

 2 )
n
  

  − 
1
 2  ∑

m=1

∞

   (−1)m[ hm + hm+n ]  
  m ! ( n + m ) !    ( x

 2 )
2m+n

   

where  hn   =   1 + 
1
 2   +  

1
 3  + . . . + 

1
 n   
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It is customary to replace y2 by the linear combination of solutions  

 Yn(x)   =   
2

 π   { y2(x) + ( γ - ln 2 ) Jn(x) },   n   =   0, 1, 2, ... 

where γ  = lim
n→∞

  ( hn − ln n )   =  0.5772156649  =  Euler Constant.   

Yn is called the Bessel function of the second kind of order n or the Neumann's function of order n. 

Thus, the general solution for ν  = n ∈ N is  

 y(x)   =   c1 Jn(x) + c2 Yn(x) 

Plots of Y0 and Y1 vs. x can be found in Fig. 105, p. 231 of the textbook.  Note that for all integer n, Yn(0)  =  − ∞  and 
Yn(∞)   =   0. 

The function Yn can be extended to all real numbers ν ≥ 0 by letting 

 Yν(x)   =   
1

 sinνπ  [ Jν(x) cos νπ − J-ν(x) ],       ν ≠ 0, 1, 2-0 

 Yn(x)   =    lim
ν→n

    Yν(x) 

In general, the general solution of Bessel's equation of order ν (regardless whether ν is integer or not) can be written as 

 y(x)   =   c1 Jν(x) + c2Yν(x) 
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[Example]   x2 y’’ + x y’ + ( x2 − 1/4 ) y   =   0 

[Solution] y   =   c1 J
1/2

(x)  + c2 Y
1/2

(x)  

or y   =   c1 J
1/2

(x)  + c2 J-1/2
(x)  

(You have to specify what J1/2, Y1/2, J-1/2 are in your answer.) 

[Example] x2 y’’ + x y’ + ( x2 − 1 ) y   =   0 

[Solution] y   =   c1 J1(x) + c2 Y1(x) 

but not y   =   c1 J1(x) + c2 J-1(x) 

since J1(x) and J-1(x) are linearly dependent! 
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5.2 Bessel’s Equations of Order ν with Parameter λ 

 x2 y'' + x y' + ( λ2x2 − ν2 ) y   =   0 

Let t  =  λ x 

 dy/dx   =   λ  dy/dt,  d2y/dx2   =   λ2 d2y/dt2 

∴ t2 
d2y
 dt2 

   +  t  
dy
 dt  + ( t2 − ν2 ) y   =   0 

⇒ y   =   c1 Jν(t) + c2 Yν(t) 

or y   =   c1 Jν(λx)  + c2 Yν(λx) 

If ν is not a positive integer or 0, then the solution can be also written as 

 y   =   c1 Jν(λx)  + c2 J-ν(λx) 
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5.3 Modified Bessel's Functions  

 x2 y'' + x y' − ( x2 + ν2 ) y   =   0 (1) 

Note that the solution of x2 y'' + x y' + ( λ2x2 - ν2 ) y   =   0  is given by 

 y   =   c1 Jν(λx) + c2 Yν(λx) 

In this case, λ = i,   λ2 =  − 1, thus the solution of (1) is 

 y   =   c1 Jν(ix) + c2 Yν(ix) 

But Jν(ix)   =   ∑
m=0

∞
 

(−1)m (ix)
ν+2m

   2
ν+2m m ! Γ( ν + m + 1 )   

  

  =  i
ν
 ∑
m=0

∞
 

x
ν+2m

   2
ν+2m m ! Γ( ν + m + 1 )   

  

∴ we let 

 Iν(x)  ≡  i-ν Jν(ix)   =  Modified Bessel's Function of the First Kind of Order ν 

If ν is not an integer, the general solution of  

 x2 y'' + x y' − ( x2 + ν2 ) y   =   0 

is given by 

 y   =   c1 Iν(x) + c2 I-ν(x) 
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If ν = n, an integer, then 

 In(x)   =   I-n(x) 

We now define 

 Kν(x)  ≡ 
π
 2  

   I-ν(x) − Iν(x)   
sinνπ   

  =  Modified Bessel's Function of the second kind with order ν 

For ν   =   n,  Kn(x)   =    lim
ν→n

  
 I-ν(x) − Iν(x) 

sinνπ   

In summary, the general solution of 

 x2 y'' + x y' − ( x2 + n2 ) y   =   0 

is  y   =   c1 In(x) + c2 Kn(x) 

and that the general solution of  

 x2 y'' + x y' − ( x2 + ν2 ) y   =   0       ,  ν ∉ I 

is given by 

 y   =   c1 Iν(x) + c2 I-ν(x) 

or y   =   c1 Iν(x) + c2 Kν(x) 

Note that In(∞)   =   ∞      Kn(∞)   =   0 
 I0(0)   =   1   Kn(0)   =   ∞ 
 I1(0)   =   0 
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5.4 Equations Solvable in Terms of Bessel Functions   

 

 

 

(i) If ( 1 − a )2 ≥ 4 c and if neither d, p nor q is zero,  then (except the Euler Equation), 

 x2 y'' + x ( a + 2 b xp ) y' + [ c + d x2q + b ( a + r − 1 ) xp + b2 x2p ] y   =   0 

has the complete solution 

 y   =   x
α
 e

-βxp  [ c1 Jν(λxq) + c2 Yν(λxq) ] 

where 

 α   =   
 1 − a  

 2     ,   β   =     
b

 p 

 λ   =   
|d|
 q        ,   ν   =   

  ( 1 − a )2 − 4 c  
 2 q   

Note p=r and q=s in the other course notes. 

If d < 0,  Jν and Yν are to be replaced by Iν and Kν, respectively. 
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(ii) If ( 1 - r )2 ≥ 4 b, a ≠ 0 and if either r - 2 < s or b = 0, then (except for Euler Equation) 

 ( xr y’ )’ + ( a xs + b xr-2 ) y   =   0 

has a complete solution 

 y   =   x
α
 [ c1 Jν(λxr) + c2 Yν(λxr) ] 

where 

 α   =   
  1 − r  

 2        ,          γ   =     
  2 − r + s  

2

 λ   =   
2 |a|

  2 − r + s     ,   ν   =   
   ( 1 − r )2 − 4 b   

 2 − r + s   

If a < 0, Jν and Yν are to be replaced by Iν and Kν, respectively. 
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(iii)  x2 y’’ + a x y’ + ( b xc + d ) y   =   0 

⇒ y   =   c1 x
α
 Jν(λx

β
)  + c2 x

α
 Yν(λx

β
) 

where 

 α   =   
  1 − a  

2   β   =     
c

 2 

 λ2   =   
  4 b  

c2   ν2   =   
c2

  4 ( α2 − d )  
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[Example]   x2 y’’ + a x y’ + ( b xc + d ) y   =   0 

[Solution] Let y   =   u x
α
 

 y’   =   α u x
α-1 + u’ x

α
 

 y’’   =   α ( α − 1 ) u x
α-2 + α u’ x

α-1 +  α u’ x
α-1 +  u’’ x

α
 

                        =   u’’ x
α
 + 2 α x

α-1 u’  +  α ( α − 1 ) u x
α-2 

Thus, the differential equation becomes 

 x2 ( u'' x
α
 + 2 α x

α-1 u' + α ( α − 1 ) u x
α-2 ) 

      +  a x ( α u x
α-1 + u' x

α
 ) + ( b xc + d ) u x

α
   =   0 

or x2 u'' +  ( 2 α + a ) x u' + {  b xc + α ( α − 1 ) + a α + d } u   =   0 

Compare the above equation with the standard form of the Bessel's differential equation 

 x2 y'' + x y' + ( λ2x2 − ν2 ) y   =   0 

we set 2 α + a   =   1 

⇒ x2 u'' + x u' + {  b xc + d − α2 } u   =   0 

Next, we set 

 z2   =   xc   or  z   =   xc/2 

then u'   =   
du
 dx    =  dx  

du
dz 

dz
 =  2  

du
dz 

c
 x   

 c2 - 1
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 u''   =   
d 
dx 

du
dx   =  

d 
dx 









 
du
dz 

c
2 x

 c2 - 1
   

  =  
d2u

 dxdz  
c

 2   x
 c2 - 1

   +   2  




 

c
2 − 1  

du
 dz  

c
 x   

 c2 - 2
 

  =  
d2u
 dz2 

 






c

 2 

2

  x  
 2  

c
2 - 1

   +     
du
 dz  

c
 2  




 

c
2 − 1   x

 c2 - 2
   

After substitution u' and u'' into the differential equation, we have 

 z2 
d2u
 dz2 

   +  z  
du
 dz   +  









  
 4 b 
 c2 

 z2 − 
 4 ( − d + α2 )  

c2 
   u   =   0 

Again, compare with the standard Bessel's differential equation, we can set 

 λ2   =   
4 b 
c2 

     ;       ν2   =   
c2

  4 ( α2 − d )  
  

and the solution is thus 

 u   =   c1 Jν(λz)  +  c2 Yν(λz) 

but y   =   u x
α
  ,  z   =   xc/2   =   x

β
 

∴ y   =   c1 x
α
 Jν(λx

β
)  +  c2 x

α
 Yν(λx

β
) 

where α   =   
 1 − a 

 2   ( a   =   1 − 2 α ) 



Series - 70 

 β   =   
  c  
2   

 λ2   =   
 4 b 

c2   ( λ2 β2   =   b ) 

 ν2   =   
  4 ( α2 − d )  

c2    ( α2 − ν2 β2   =   d ) 

 

 

[Exercise]   Try to use the substitutions 

 y   =   u x1/2  and   z   =   x1/2 

to find the solutions (in terms of Bessel's functions) to the following differential equation 

 x y'' + y   =   0 

[Answer] y   =   c1 x  J1( 2  x )  +  c2 x  Y1( 2  x ) 
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5.5 Some Important Properties of Bessel Functions 

(A) Identities 

(1) 
 d[ x

ν
 Jν(x) ] 

dx    =  x
ν
 Jν-1(x) 

(2) 
 d[ x-ν Jν(x) ] 

dx    =  - x-ν Jν+1(x) 

(1)Y 
 d[ x

ν
 Yν(x) ] 
dx    =  x

ν
 Yν-1(x) 

(2)Y 
 d[ x-ν Yν(x) ] 

dx    =  − x-ν Yν+1(x) 

(1)I 
 d[ x

ν
 Iν(x) ] 

dx    =  x
ν
 Iν-1(x) 

(2)I 
 d[ x-ν Iν(x) ] 

dx    =  x-ν Iν+1(x) 

(1)K 
 d[ x

ν
 Kν(x) ] 
dx    =  − x

ν
 Kν-1(x) 

(2)K 
 d[ x-ν Kν(x) ] 

dx    =  − x-ν Kν+1(x) 

(3) Jν-1(x) + Jν+1(x)   =   
 2 ν 

x   Jν(x) 
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(4) Jν-1(x) - Jν+1(x)   =   2 Jν' (x) 

(5) ⌡⌠
 

 
  x

ν
 Jν-1(x) dx   =   x

ν
 Jν(x) + C 

(6) ⌡⌠
 

 
  x-ν Jν+1(x) dx   =   − x-ν Jν(x) + C 

(7) ⌡⌠
 

 
  Jν+1(x) dx   =    ⌡⌠

 

 
 Jν-1(x) dx − 2 Jν(x) 
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[Example] Express J4(λx) in terms of J0(λx) and J1(λx) 

[Solution] It is known that 

( ) ( ) ( )1 1
2J x J x J x

xν ν ν
νλ λ λ

λ− ++ =  

∴ ( ) ( ) ( )1 1
2J x J x J x

xν ν ν
νλ λ λ

λ+ −= −  

⇒ J4(λx)   =   
6

 λx   J3(λx) − J2(λx) 

J3(λx)   =   
4

 λx   J2(λx) − J1(λx) 

J2(λx)   =   
2

 λx   J1(λx) − J0(λx) 

⇒ J4(λx)   =   






 

48
  λ3 x3  

 − 
8

  λ x     J1(λx) - 






 

24
  λ2 x2  

 − 1   J0(λx) 
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[Exercise] Show that 

⌡⌠
 

 
  x J0(x) dx   =   x J1(x) + C 

( ) ( )1 0
d xJ x xJ x
dx

=    

⌡⌠
 

 
  J1(x) dx   =   - J0(x) + C 

( ) ( )0
1

dJ x
J x

dx
= −  

 

( ) ( )1
d x J x x J x
dx

ν ν
ν ν

− −
+  = −   
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( ) ( )1
d x J x x J x
dx

ν ν
ν ν

− −
+  = −   

[Example] Evaluate ⌡⌠  J3(x) dx 

[Solution] ⌡⌠  J3(x) dx   =    ⌡⌠ x2 [ x-2 J3(x) ] dx 

                           ⇓        ⇓ 
                             u        dv 

u   =   x2    ;    dv   =   x-2 J3(x) dx   =   d( − x-2 J2(x) ) 

2=ν  

Integration by parts: 

⌡⌠  J3(x) dx   =   − x2 ( x-2 J2(x) ) +  ⌡⌠ x-2 J2(x) dx2 

=  − J2(x) + ⌡⌠  2 x-1 J2(x) dx     1=ν  

=  − J2(x) - 2 x-1 J1(x) + C 
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[Example] 
⌡

⌠

 

 

 
 J2(3x) 

x2   dx  =  
1
 9   ⌡


⌠

 

 
  [ (3x)2 J2(3x) ] 

 dx 
x4    

                                                             ⇓                 ⇓ 
                                                             u             dv 

( ) ( )1
d x J x x J x
dx

ν ν
ν ν −  =          ∴      du   =   (3x)2 J1(3x) 3 dx            v   =   −  

1
 3 x3 

  

∴  
⌡

⌠

 

 

 
 J2(3x) 

x2   dx =  
1
 9  






 − 

 3 J2(3x) 
x  + ⌡⌠ 

1
 3 x3 

 ( 3 x )2 J1(3x) 3 dx   

=  
1
 9  






 − 

 3 J2(3x) 
x  + 3 ⌡⌠  3 x J1(3x) 

dx
x2    

                                     ⇓          ⇓ 
                                      u           dv 

u   =   3 x J1(3x)           ;          dv   =   dx/x2 

( ) ( )1
d x J x x J x
dx

ν ν
ν ν −  =      ∴    du   =   3x J0(3x) 3 dx ;           v   =   −  1/x 

∴ 
⌡

⌠

 

 

 
 J2(3x) 

x2   dx =  
1
 9  








 − 
  3 J2(3x)  

x  + 3 



 -3 J1(3x) + 9 ⌡⌠ J0(3x) dx    

=  −  
  J2(3x)  

 3x   − J1(3x) + 3 ⌡⌠  J0(3x) dx 
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In general, an integral of the form 

⌡⌠  xm Jn(x) dx            m+n ≥  0 

1. completely integrated if m + n = odd, 

2. have ⌡⌠ J0(x) dx  for m + n = even. 
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(B) Behavior Near the Origin 

n   =   0 J0(0)   =   I0(0)   =   1 
 Y0(0)   =   - ∞ 
 K0(0)   =    ∞ 

n   =   1, 2, ... Jn(0)   =   In(0)   =   0 
 Yn(0)   =   - ∞ 
 Kn(0)   =   ∞ 

(C) Asymptotic Behavior for Large x 

 Jn(x)  ≈   
2

πx    cos( x −  
π
 4   −  

 n π 
2   ) 

 Yn(x)  ≈   
2

 π x     sin( x −  
π
 4   −  

 n π 
2   ) 

(D) Bessel Function of Half Integer Order 

 J
1/2

(x)   =   
2

πx    sin x  

 J-1/2
(x)   =   

2
πx    cos x 

 I
1/2

(x)   =   
2

πx    sinh x 
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 I
1/2

(x)   =   
2

πx    cosh x 

(E) Bessel Function of Negative Order,  n ∈ N 

 J-n(x)   =   (−1)n Jn(x) 
 Y-n(x)   =   (−1)n Yn(x) 
 I-n(x)   =   In(x) 
 K-n(x)   =   Kn(x) 
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Summary 

1 f(x)   =   ∑
m=0

∞

   m!   ( x − x0 
f(m)(x0) )m Taylor Series 

When x0  =  0  ⇒  Maclaurin Series 

2 Ratio Test 

 ρ   =   lim
m→∞

 








 
am+1 ( x − x0 )m+1 

am ( x − x0 )m    

3 Analytic Function, Regular Point, Singular Point, etc.  

 y'' + p(x) y' + q(x) y   =   0 

If p(x), q(x) are analytic at x = 0 ⇒ x = 0 is a regular point 

  ⇒ y = ∑
m=0

∞

  am xm 

If p(x), q(x) are not analytic at x = 0  ⇒ singular point 

For x = 0 is a singular point, rewrite the differential equation in the following form: 

 y'' + 
 b(x) 

x   y' + 
 c(x) 

x2   y   =    0 

If b(x), c(x) analytic at x = 0 ⇒ regular singular point 
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  ⇒ y = xr ∑
m=0

∞

  am xm 

If b(x), c(x) not analytic ⇒ irregular singular point 

4 Frobenius Method - Extended Power Series Method 

Any differential equation of the form 

 y'' + 
 b(x) 

x   y' + 
 c(x) 

x2   y   =    0 

where b(x) and c(x) are analytic at x = 0, has at least one solution of the form 

 y   =   xr ∑
m=0

∞

  amxm   =   xr ( a0 + a1x + a2 x2 +  ... ),  a0 ≠ 0 

where r may be any number ( real or complex ). 

Form of the Second Solution 

Case 1:   r1 and r2 differ but not by an integer 

 y1   =   xr1 ( a0 + a1 x + a2 x2 + . . . )  

 y2   =   xr2 ( A0 + A1 x + A2 x2 + . . . )  

Case 2:   r1 = r2 = r,   r  =  
1

  2   ( 1 − b0 )  

 y1   =   xr ( a0 + a1 x + a2 x2 + . . . ) 
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 y2   =   y1 ln x  +  xr (A1 x + A2 x2 + . . . ) 

Case 3:   r1 and r2 differ by a nonzero integer, where r1  >  r2 

 y1   =   xr1 ( a0 + a1 x + a2 x2 + . . . )  

 y2   =   k y1 ln x +  xr2 ( A0 + A1 x + A2 x2 + . . . )  

 where r1 − r2 > 0  and k may be zero. 

Note that in Case 2 and Case 3, the second linearly independent solution y2 can also be obtained by reduction of order 
method ( i.e., by assuming y2 = u y1 ). 
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1. Legendre's Differential Equation  

( 1 - x2 ) y''  - 2 x y'  + n ( n + 1 ) y  =  0 ,  n  =  0, 1, 2, . . . 

 y  =  c1 Pn(x)  +  c2 Qn(x) 

where Pn(x)  =  Legendre polynomials 
 Qn(x)  =  Legendre functions of the second kind 

2. x2 y''  +  x y'  +  ( x2 - ν2 ) y  =  0 

(1) ν ∈ N  ( ν  = n ) 

  y  =  c1 Jn(x)  +  c2 Yn(x) 
  y  =  c1 Jn(x)  +  c2 J-n(x)        ⇐ No! 

(2) ν ∉ N 

 y  =  c1 Jν(x)  +  c2 Yν(x) 
or y  =  c1 Jν(x)  +  c2 J-ν(x) 

Need to specify J and Y . . .  

3. x2 y''  +  x y'  +  ( λ2 x2 - ν2 ) y  =  0 

(1) ν ∈ N  ( ν  = n ) 

  y  =  c1 Jn(λx)  +  c2 Yn(λx) 
  y  =  c1 Jn(λx)  +  c2 J-n(λx)        ⇐ No! 

(2) ν ∉ N 

 y  =  c1 Jν(λx)  +  c2 Yν(λx) 
or y  =  c1 Jν(λx)  +  c2 J-ν(λx) 
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Need to specify J and Y . . . 

4. x2 y''  +  x y'  -  ( x2 + ν2 ) y  =  0 

(1) ν ∈ N  ( ν  = n ) 

  y  =  c1 In(x)  +  c2 Kn(x) 
  y  =  c1 In(x)  +  c2 I-n(x)        ⇐ No! 

(2) ν ∉ N 

 y  =  c1 Iν(x)  +  c2 Kν(x) 
or y  =  c1 Iν(x)  +  c2 I-ν(x) 

Need to specify I and K . . . 

 5. J0, J1, Y0, Y1, I0, I1, K0, K1 之 圖 形 
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