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 CHAPTER 5  SERIES SOLUTIONS 
1 Power Series Method 

 

1.1 Power Series 

 

∑
m=0

∞

  am ( x − x0 )m   =   a0 + a1 ( x − x0 ) + a2 ( x − x0 )2 + . . . 

where, a0, a1 , . . ., are constants (coefficients);  x0 is a constant (center) 
 

Taylor's Formula 

f(x)   =  ∑
m=0

N

   m!   ( x − x0 
f(m)(x0) )m + RN (x − x0) 

If (x − x0) is sufficiently small, RN (x − x0) → 0 as N → ∞, then, we say f(x) is analytic at x0, and 

f(x)   =   ∑
m=0

∞

   m!   ( x − x0 
f(m)(x0) )m 

Taylor Series 
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When          x0  =  0  ⇒  Maclaurin Series 

 

Examples:  

ex   =   ∑
m=0

∞

    
xm

 m!   = 1 + x + 
x2

 2!    +   
x3

 3!   + . . . 

sin x   =  ∑
m=0

∞

      ( 2 m + 1 ) !  
 (−1)m x2m+1 

 
3 5 7

3! 5! 7!
x x xx= − + − +  

cos x   =   ∑
m=0

∞

     (2m)! 
 (−1)m x2m 

 
2 4 6

1
2! 4! 6!
x x x

= − + − +  
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1.2 Basic Idea of the Power Series Method 

 

 

In the previous discussion, the linear differential equations with constant coefficients were solved and shown to have solution for  

0y ay by′′ ′+ + =  

They can be anyone of the following 3 forms: 

( )

1 2
1 2

1 2

1 2

( )

cos sin

m x m x

mx

x

y A e A e
y A A x e
y e A x A xα β β

= +

= +

= +

 

But, exponential, sine and cosine functions can be expressed in terms of Maclaurin series or Taylor series expanded around 
zero.  
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[Example] y'' + y   =   0 

[Solution] Assume 

 y   =   ∑
m=0

∞

  am xm   =   a0 + a1 x + a2 x2 + . . . 

y'   =   ∑
m=1

∞

  m am xm-1   =   a1 + 2 a2 x + 3 a3 x2 +  . . .;           y''   =    ∑
m=2

∞

 m ( m - 1 ) am xm-2   =   2a2 + 6 a3 x + 12 a4 x2 +  . . . 

Since y'' + y   =   0 

⇒ (2a2 + 6a3 x + . . .) + (a0 + a1 x + a2 x2 + . . .)   =   0         or (2a2 + a0) + (6a3 + a1) x + (12a4 + a2) x2 + . . .   =   0 

Since 1, x, x2, . . ., xn are linearly independent functions, we have 

 2a2 + a0   =   0 coefficients of x0 
 6a3 + a1   =   0 coefficients of x1 
 12a4 + a2   =   0 coefficients of x2 

∴    (1) a2, a4, a6, . . ., can be expressed in terms of a0 and (2) a3, a5, a7, . . ., can be expressed in terms of a1 

where a0 and a1 are arbitrary constants.  After solving the above simultaneous equations, we have 

 a2   =    − 
 a0 
2    = −   

 a0 
2! ;    a3   =   −  

 a1 
6    = −   

 a1 
3! ;    a4   =   . . .   =   

 a0 
4!   ; ... 

thus y   =   a0 







 1  −  
x2

  2!    +  
x4

  4!    −  ...      + a1 







 x  −  
x3

  3!    +  ...    = a0 cos x + a1 sin x 
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 Since every linear differential equation with constant coefficients always possesses a valid series solution, it is natural to expect the 
linear differential equations with variable coefficients to have series solutions too.   

 Also, since the majority of series cannot be summed and written in a function form, it is to be expected that some solutions must be 
left in series form. 

  

y'' + p(x) y' + q(x) y   =   0 

where p(x) and q(x) are expressed in polynomials.   

 

We assume 

 y   =   ∑
m=0

∞

  am xm   =   a0 + a1 x + a2 x2 + . . . 

 y'   =   ∑
m=1

∞

  m am xm-1   =   a1 + 2 a2 x + . . . 

 y''   =   ∑
m=2

∞

  m ( m − 1 ) am xm-2   =   2 a2 + 3 × 2a3 x  + . . . 

(1) Put y, y' and y'' into the differential equation  

(2) Collect terms of x0, x1, x2, . . .,  

(3) Solve a set of simultaneous equations of a0, a1, a2, .... 
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2 Theory of Power Series Method 
 

2.1 Introduction 

Power Series: 

S(x)   =   ∑
m=0

∞

  am ( x − x0 )m   =   a0 + a1 ( x − x0 ) + a2 ( x − x0 )2 + . . . (1) 

Partial Sum: 

Sn(x)   =   a0 + a1 ( x − x0 ) + a2 ( x − x0 )2 + . . . + an ( x − x0 )n                                                               (2) 

Remainder: 

Rn(x)   =   an+1 ( x − x0 )n+1 + an+2 ( x − x0 )n+2 + . . .                                                                                (3) 

 

Note that Rn   =   S − Sn     or | Sn − S |   =   | Rn | 

Convergence:    

Definition 1:  If lim
n→∞

  Sn(x1)   =   S(x1),  then the series (1) converges at x   =   x1  and 1 0x x≠  

Definition 2: If the series converges, then for every given positive number ε (no matter how small, but not zero), we can find a 
number N such that| Sn − S | < ε for every n > N 
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2.2 Radius of Convergence 

 

Example 1: 

 ∑
m=0

∞

  xm   =   1 + x + x2 + . . .  ⇒       |x| > 1  divergent;  |x| < 1 convergent 

Example 2: 

 ∑
m=0

∞

   
  xm  
m!   =   1 + x + 

  x2  
2!   + . . .  (   =   ex )    ⇒     convergent for all x.   

 

If a series converges for all x in  

 | x − x0 | < R 

and diverges for 

 | x − x0 | > R  (0 < R < ∞) 

then   R   =   radius of convergence 

R   =   ∞  if series converges for all x.   
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R can be calculated by the following formula: 

 R   =   
1

 lim
m→∞






am+1

am
 
    (Ratio Test) 

 

Ratio Test 

 ρ   =   lim
m→∞

 








 
am+1 ( x − x0 )m+1 

am ( x − x0 )m   =  lim
m→∞

 








 
am+1 ( x − x0 ) 

am   1
0 lim m

m
m

ax x
a

+

→∞
= −  

if ρ   >   1 divergent 
 ρ   <   1 convergent 
 ρ   =   1 test fails (i.e., inconclusive) 

 

Since ρ  <  1 : convergence, we need    1
0 lim m

m
m

ax x
a

+

→∞
− =  lim

m→∞
 






 

am+1 ( x - x0 ) 
am    < 1 

| x - x0 | < 
1

 lim
m→∞






am+1

am
 
    = R   

(radius of convergence) 
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[Example] ex   =   1 + x + 
  x2  

2!   + . . .   =    ∑
m=0

∞

   xm  
m!     

 ρ    =   lim
m→∞






am+1x

am
  = lim

m→∞





 

x/(m+1) !
1/m !     =  lim

m→∞
 

x
m+1   =  0  <  1 

⇒ The series converges, i.e.,  

R   = 
( ) ( )1/ !lim lim 1

1/ 1 !m m

m m
m→∞ →∞

= + =
+

  ∞,  i.e., converges for all x. 

 

[Example] ∑
m=0

∞

  xm   =   1 + x + x2 + x3 + . . . 

 ρ   =   lim
m→∞






 

 x am+1 
am

    =  lim
m→∞

  | x |   =   | x | 

thus,  converges for  | x | < 1 
 diverges for   | x | > 1 

 test fails for               | x | = 1 

Radius of convergence 

 | x | <  R   =   1lim 1
1m→∞

=  , i.e., converges for all x in | x | < 1.   

In fact, this series converges to  
1

 1 − x    for − 1 < x < 1. 
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[Example] ∑
m=0

∞

  m! xm   =   1 + x + 2x2 + 6x3 + . . . 

 ρ   =   lim
m→∞






 x am+1 

am
   =  

x ( m + 1 ) !
m !    =  x ( m + 1 )   =    ∞  >  1 

1

1lim lim 0
1

m

m m
m

aR
a m→∞ →∞

+

= = =
+

  Thus, this series diverges for all x ≠ 0. 

 

[Example]   ∑
m=0

∞

   
 8m 

  
  (−1)m  

 x3m       

This is a series in powers of t = x3 with coefficients am = 
  (−1)m  

 8m 
   ,  so that   ρ   =   lim

m→∞





 

 t am+1 
am

    =  
| t |

 8     

thus, converges for 

 
 | t | 

8    < 1        or       | t | <  8      or      
1

lim 8m

m
m

aR
a→∞

+

= = ,  i.e.,  | x | < 2 
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2.3 Properties of Power Series 

 

(1) A power series may be differentiated term by term (Term-wise Differentiation). 

y(x)   =    ∑
m=0

∞

  am ( x − x0 )m,   |x − x0| < R and R > 0    ⇒    y'(x)   =    ∑
m=0

∞

 m am ( x − x0 )m-1  = ( ) 1
0

1

m
m

m
ma x x

∞
−

=

−∑  

(2) Two power series may be added term by term (Term-wise Addition). 

f(x)   =    ∑
m=0

∞

  am ( x − x0 )m      and        g(x)   =     ∑
m=0

∞

 bm ( x − x0 )m    ⇒    f(x) + g(x)   =    ∑
m=0

∞

  )( am + bm ) ( x − x0 m 

 

(3) Two power series may be multiplied term by term (Term-wise Multiplication). 

 ⇒       f(x) g(x)   =   ∑
m=0

∞

  )( a0 bm + a1 bm−1 + . . . + am b0 ) ( x − x0 m 

(4) Vanishing of all Coefficients (Linearly Independence). 

f(x)   =    ∑
m=0

∞

  am ( x − x0 )m   =    0  for all x in |x − x0| < R      ⇒       am   =   0  for all  m. 
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Let's ask ourselves a question:  Can all linear second-order variable coefficient differential equations be solved by power series 
method?  Let us answer this question by the following illustration: 

 

[Example] Solve the following Euler equations 

 x2 y'' + a x y' + b y   =   0 

where (i) a   =   − 2,  b  =   2 
 (ii) a   =   − 1,  b  =   1 
 (iii) a   =   1,  b  =   1 

[Solution] we assume 

 y   =   ∑
m=0

∞

  cm xm ; y'   =     ∑
m=1

∞

 m cm xm-1=    ∑
m=0

∞

  m cm xm-1;  

 y''    =   ∑
m=2

∞

  m ( m − 1 ) cm xm-2=    ∑
m=0

∞

 m ( m − 1 ) cm xm-2 

∴ x2 y'' + a x y' + b y = 

  ∑
m=0

∞

  [m ( m − 1 ) + a m + b ] cm xm   =   0 

Note that m ( m − 1 ) + a m + b = 0 is the characteristic equation for Euler equation. 
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Case (i) a   =   − 2,  b   =   2 

⇒ ∑
m=0

∞

   ( m2 − 3 m + 2 )  cm xm   =   0 

∴ ( m2 − 3 m + 2 ) cm   =   0       or ( m − 2 ) ( m − 1 ) cm   =   0 

⇒ cm   =   0 for all m ≠ 1 or 2     ( )0 3 4 0c c c= = = =  

⇒ y   =   c1 x + c2 x2             Same if solved with characteristic equation!!! 

 

Case (ii) a   =   − 1,  b   =   1 

⇒ ∑
m=0

∞

  ( m2 − 2 m + 1 )  cm xm   =   0 

∴ ( m − 1 )2 cm   =   0 

⇒ cm   =   0  for all m ≠ 1 

⇒ y   =   c1 x    ∴In this case, power series method yields only one solution: y = c1 x.   

We need another linearly independent solution to get the general solution of the differential equation. 

⇒ Reduction of order:  let y2   =   x u         ⇒ x3 u'' + x2 u'   =   0 

⇒ u   =   c ln|x|         ⇒ y   =   A x + B x ln|x|  (Same as before!!!) 
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Case (iii) a   =   1,  b   =   1 

⇒ ( m2 + 1 ) cm   =   0 

⇒ cm   =   0  for all m 

i.e., the power series method fails completely, but why?? 

 

By the way, the general solution of Case (iii ) is  

 y   =   A cos(ln|x|) + B sin(ln|x|) 
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2.4 Regular Point and Singular Point 

Analytic Function:  If g is a function defined on an interval I, containing a point x0, we say that g is analytic at x0  if g can be 
expanded in a power series about x0 which has a positive radius of convergence. 

 

A function ƒ is real analytic on an open set D in the real line if for any x0 in D 
one can write 

 

in which the coefficients a0, a1, ... are real numbers and the series is convergent to ƒ(x) 
for x in a neighborhood of x0. 

Alternatively, an analytic function is an infinitely differentiable function such 
that the Taylor series at any point x0 in its domain 

 

converges to ƒ(x) for x in a neighborhood of x0 (in the mean-square sense). The set of 
all real analytic functions on a given set D is often denoted by Cω(D). 
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 Any polynomial in x is analytic for all x.   

 Any rational function (ratio of polynomials) is analytic for all values of x which are not zeros of the denominator 
polynomial. 

Question:  Are ex,  x  , and   
1

 x   analytic at x   =   0? 

 

Theorem (Existence of Power Series Solutions) 

If the function p, q, r in 

 y'' + p(x) y' + q(x) y   =   r(x) 

are analytic at 0x x= , then every solution y(x) of the above equation is analytic at 0x x=  and can be represented by a power series of x - 

x0 with radius of convergence 0R > , i.e.  y   =   ∑
m=0

∞

  am ( x − x0 )m 

 

Definition:  Regular Point and Singular Point 

We call x   =   0 a regular point (or ordinary point) of the differential equation 

 y'' + p(x) y' + q(x) y   =   0 

when both p(x) and q(x) are analytic at x = 0.   

If x = 0 is not a regular point, it is called a singular point of the differential equation. 
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[Example]  

x y'' + 2 y' + x y   =   0 

 y'' + 
  2  
 x    y' +  y   =   0 

⇒ x   =   0 is a singular point!   ∴ may give some trouble in power series method. 

 

Although it is inappropriate, we nonetheless assume       y   =   ∑
m=0

∞

  cm xm 

The differential equation becomes 

 ∑
m=2

∞

  m ( m − 1 ) cm xm-1 +  ∑
m=1

∞

 2 m cm xm-1 + ∑
m=0

∞

  cm xm+1   =   0 

Let     1   m k= + ⇒     ∑
m=2

∞

  m ( m − 1 ) cm xm-1   =    ∑
k=1

∞

 ( k + 1 ) k ck+1 xk 

Let     1   m k= + ⇒    ∑
m=1

∞

  2 m cm xm-1   =    ∑
k=0

∞

 2 ( k + 1 ) ck+1 xk  =  2 c1 + ∑
k=1

∞

  2 ( k + 1 ) ck+1 xk 

Let     1   m k= − ⇒     ∑
m=0

∞

  cm xm+1   =    ∑
k=1

∞

 ck-1 xk 
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Thus we have 

 2 c1 + ∑
k=1

∞

  {[ ( k + 1) k + 2 ( k + 1 )] ck+1 + ck-1 }  xk  =  0     or 2 c1  +   ∑
k=1

∞

 { ( k + 1 ) ( k + 2 ) ck+1 + ck-1 } xk  =  0 

∴ c1   =   0 

 ck+1   =   
− ck-1

 ( k + 2 ) ( k + 1 )   for k ≥ 1 

∴ c3   =   c5   =   c7   =   . . .   =   0 

 c2   =   −  
c0

 3!   c4   =      
c0

 5! 

∴  y   =   c0 







 1 −  
x2

  3!   + 
x4

  5!   + . . .   = c0 
 sin x 

x   

Only one solution is obtained!  The other linearly independent solution can be obtained by the method of reduction of 
order: 

⇒ y2   =   u 
 sin x 

x       ( )
12

1

1 sin 2 where  and 
p x dx xu e y p

y x x
− ∫′ = = = 

 
     ⇒ y2   =   

 cos x 
x     (Exercise!) 

∴ y   =   A 
 sin x 

x    + B   
 cos x 

x

Note that    
 cos x 

x    =  x-1   4!   + . . . 








 1 −  
x2

  2!   + 
x4

 .  

This suggests that we may try y   =   xr (c0 + c1 + c2 x2 + . . .)  in the first place to obtain the second linearly independent 
solution. 
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3 Frobenius Method 
 

3.1 General Concepts  

 

 y'' + p(x) y' + q(x) y   =   0 

 

If p(x), q(x) are analytic at x = 0        ⇒ x = 0  is a regular point, two linearly independent exist .  ⇒   y = ∑
m=0

∞

  am xm 

If p(x), q(x) are not analytic at x = 0          ⇒ singular point 

For x = 0 is a singular point, rewrite the differential equation in the following form: 

 y'' + p(x) y' + q(x) y   =  y'' + 
 b(x) 

x   y' + 
 c(x) 

x2   y   =    0 

If b(x), c(x) analytic at x =0   ⇒ regular singular point, at least one solution exist with the following form 

⇒ y = xr ∑
m=0

∞

  am xm   where r is a parameter which need to be determined.  It can be positive or negative. 

If b(x), c(x) not analytic at x=0   ⇒    irregular singular point, a non-trivial solution may or may not exist. 
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Theorem 1 (Frobenius Method)  

Any differential equation of the form 

 y'' + 
 b(x) 

x   y' + 
 c(x) 

x2   y   =    0 

where b(x) and c(x) are analytic at x = 0 ( a regular singular point) , has at least one solution of the form 

 y   =   xr ∑
m=0

∞

  amxm   =   xr ( a0 + a1x + a2 x2 +  ... ),  

where a0 ≠ 0 and r may be any number ( real or complex ). 

 

 

x=0 regular singular point!!! 
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3.2 Indicial Equation 

 

 y''  +  
  b(x)  

x   y'  +  
  c(x)  

x2   y   =    0          or x2 y'' + x b(x) y' + c(x) y   =   0 

Since b(x) and c(x) are analytic, i.e., 

 b(x)   =   b0 + b1 x + b2 x2 + . . . 

 c(x)   =   c0 + c1 x + c2 x2 + . . . 

We let  

y   = xr ∑
m=0

∞

  am xm = ( )2
1 20

rx a xa a x+ + +  

y'   =  ∑
m=0

∞

  ( m + r ) am xm+r-1   =  xr-1   ∑
m=0

∞

 ( m + r ) am xm   

 = xr-1 [ r a0 + ( r + 1 ) a1 x + . . .  ] 

y''   =    ∑
m=0

∞

  ( m + r ) ( m + r − 1 ) am xm+r-2  = xr-2    ∑
m=0

∞

 ( m + r ) ( m + r − 1 ) am xm 

  =  xr-2 [ r ( r − 1 ) a0 + ( r + 1 ) r a1 x +  . . . ] 

 



Series - 22 

 

 

Put y, y', y'', b(x), c(x) into the differential equation and collect terms of xp, we have (for xr terms) 

 [ r ( r − 1 ) + b0 r + c0 ] a0   =   0 

Since a0 ≠ 0, we have 

 r ( r − 1 ) + b0 r + c0    =   0 Indicial Equation !!! 

Two roots for r: 

 one root  for   y1 = xr ∑
m=0

∞

  am xm 

 another  root ⇒ Theorem 2 for y2 
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Theorem 2   (Form of the Second Solution) 

 

Case 1:  r1 and r2 differ but not by an integer 

y1   =   xr1 ( a0 + a1 x + a2 x2 + . . . )  

y2   =   xr2 ( A0 + A1 x + A2 x2 + . . . )  

Case 2:  r1 = r2 = r,   r =  
1

  2   ( 1 − b0 )  

y1   =   xr ( a0 + a1 x + a2 x2 + . . . ) 

y2   =   y1 ln x +  xr (A1 x + A2 x2 + . . . ) 

Case 3:  r1 and r2 differ by a nonzero integer, where r1  >  r2 

y1   =   xr1 ( a0 + a1 x + a2 x2 + . . . )  

y2   =   k y1 ln x +  xr2 ( A0 + A1 x + A2 x2 + . . . )  

where r1 − r2 > 0  and k may or may not be zero!!! 

 

Note that in Case 2 and Case 3, the second linearly independent solution y2 can also be obtained by reduction of order 
method ( i.e., by assuming y2 = u y1 ). 
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Case 1:  r1 and r2 differ but not by an integer 

 

[Example] y'' + 
1

  4 x    y' +  
1

  8 x2  
 y   =   0,   x > 0  (Euler Equation) 

[Solution] y   =   xr ( a0 + a1 x + a2 x2 + . . .  )   =   xr ∑
m=0

∞

  am xm   =   ∑
m=0

∞

 am xm+r 

 y'    =  ∑
m=0

∞

  (m+r) am xm+r-1 

 y''     =  ∑
m=0

∞

  (m+r) (m+r-1) am xm+r-2 

⇒ ∑
m=0

∞

  am  4  ( r + m ) + 
1
 8   







 ( r + m ) ( r + m − 1 ) + 

1
 xr+m-2   =   0 

For m =  0,  am ≠ 0   ( 0 0  by Theorem 1a ≠ ), we have the indicial equation: 

 r ( r − 1 ) +  
1

  4    r  +   
1

  8    =  0    ⇒   r1  = 1/4  and  r2 =  1/2 

Note that in this case, r1 ≠ r2 and r1 − r2 is not an integer. 

2 1
1
4

r r− =  



Series - 25 

For r =
1

  4    ,  we have     y1   =   x1/4 (a0 + a1 x + a2 x2 + . . . ) 

∴ ∑
m=0

∞

  am 4  + m − 1  + 
 1 
4 






 1 

4  + m  + 
1
 8   







 







 1 

4  + m 






 1 

 x  

1
 4  + m - 2 

  =  0       or ∑
m=0

∞

  am  







 m2 - 
 m 
4   x

m - 
 7 
4    =  0 

which is valid for all x > 0.   

Thus, we have      am m 






 m − 

1
 4     =  0  for all m (=0, 1, 2, …) 

⇒   for m   =   0 a0 =  arbitrary nonzero constant 

but  for m   =   1,  2, …  am  =  0 

⇒ y1    =   a0 x1/4 

 

Similarly, for r   =   1/2,  we have  

( by setting y2 = x1/2 ( A0 + A1 x + A2 x2 + A3 x3  + . . .  ,   Exercise! ) 

⇒ y2   =   A0 x1/2 

 

Hence, the general solution is 

 y   =   a0 x1/4 + A0 x1/2  
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[Example]  y'' + 
1

  x    y' +  
1

  x2  
 y   =   0,  x > 0 

[Solution] Letting y =  xr ∑
m=0

∞

  am xm  ,  we have    ∑
m=0

∞

 am [ ] ( r + m ) ( r + m − 1 ) + ( r + m ) + 1   xr+m-2   =   0 

The indicial equation is ( 00, 0m a= ≠ )        r ( r − 1 ) + r + 1   =   r2 + 1   =   0 

∴ r1   =   i,  r2   =   − i,  r1 − r2 =2i  is not an integer. 

For  r   =   i 

 ∑
m=0

∞

  am  [ ] ( i + m ) ( i + m − 1 ) + ( i + m ) + 1  xi+m-2   =   0 

or am [ ( i + m )2 + 1 ]   =   0       or am m ( m + 2 i )   =   0 

⇒ m = 0  a0 ≠ 0,  i.e., a0 is an arbitrary nonzero constant 

 m ≠ 0  am = 0 

⇒ y1   =   a0 xi   ln
0

i xa e= =   a0 [ cos(lnx) + i sin(lnx) ] =  cos(lnx) + i sin(lnx) By taking a0   =   1 

For r  =  − i, we have  (Exercise!)     y2  =  x-i   =  cos(lnx)  − i sin(lnx) 

Since the linear combinations of solutions are also solutions of the linear differential equation, thus, 

y1*   =   
 1 
2   ( y1 + y2 )   = cos(lnx)       and      y2*   =    

 1 
2i   ( y1 − y2 )  =  sin(lnx)        ⇒ y   =   c1 cos(lnx)  + c2 sin(lnx) 
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Case 2,  r1   =   r2   =   r ,  Double Roots 

[Example] y'' + y' + 
1

 4 x2 
  y   =   0,   x > 0 

[Solution] Letting  y   =   xr ∑
m=0

∞

  am xm,   we have 

 ∑
m=0

∞

  am ( r + m ) ( r + m - 1 ) xr+m-2 +  ∑
m=0

∞

 am ( r + m ) xr+m-1+  ∑
m=0

∞

   
1
 4  am xr+m-2   =   0 

1 2    1r m r k m k+ − = + − ⇒ = −  

Since  ∑
m=0

∞

  am ( r + m ) xr+m-1   =    ∑
k=1

∞

 ak-1 ( r + k − 1 ) xr+k-2 =  ∑
m=1

∞

  am-1 ( r + m − 1 ) xr+m-2 

The differential equation becomes 

 a0 




 r ( r − 1 ) + 

 1 
4    xr-2  +   ∑

m=1

∞

    4    + am-1 ( r + m − 1 )  








 am





( r + m ) ( r + m − 1 ) + 

1
 xr+m-2   =   0 

 

The indicial equation is  

 r ( r − 1 ) + 
1
 4    =  0 or  







 r − 

1
 2  

2
  =  0     ⇒   r1  =  r2  =  r  =   

1
 2   
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For  r   =   
1
 2   

 ∑
m=1

∞

    2  ) + 
1
 4    + am-1 ( m − 

1
 2  )  









 am





 ( 

1
 2  + m ) ( m − 

1
 x  

m - 
3
 2  =  0     or ∑

m=1

∞

    








 m2 am + 






 m − 

1
 2   am-1  xm - 

3
 2   =  0 

⇒ am   =   –  
 



 m − 

1
 2   am-1 

m2    for  m  ≥  1     (recurrence formula) 

Hence       a1   =   
 a0 
2  ,   a2   =  ( ) 1 0

2 2

3 / 2 3
2 2 2 2

a a − = − − = ⋅  
 
  3 a0  
 22 22 

 , . . . 

and  y1   =   a0 x
1
 2   







 1 − 

 x 
  2   + 

3
 22  






 x 

  2  
2
 + ...  = 

( )
( )

n

n

x
n
nx 






−∑

∞

= 4!
!2

0
3

2/1
,   x > 0 

Note that we have set a0  =  1 in the above equation. 

 

Approach 1 

Since r  =  r1  =  r2, another solution can be obtained by directly letting 

 y2   =   y1 lnx + xr (A1 x + A2 x2 + ... ) (Exercise!) 

⇒ y2   =   y1 lnx  +  x
1

  2    








 − 
x2

 16   + ...   
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Approach 2 

We can also use the method of reduction of order to produce the second linearly independent solution, y2, by letting 

 y2   =   u y1 

Put into the differential equation, 

 u'' y1  + u' ( 2 y1' + y1 )   =   0        ⇒ 
 u'' 
u'    = − 2  

y1'
y1

 − 1   =   . . . (long division)   =   – 
1

 x    −  
x
 4   + . . . 

i.e., ln u'   =   − ln x −  
x2

 8    +  . . .         or u'   =    
1
 x  exp 









 − 
  x2  
 8  + . . .    =  . . .   

By expanding the exponential function in Taylor series and then integrating 

 u =  ln x  −  
x2

 16     +  . . . 

⇒ y2   =   y1 u   =   y1 







 ln x − 
x2

  16   + . . .  =  y1 ln x  +   16   + . . . x 








 − 
x2

  

 

Both are tedious and intractable! 

 

[Exercise] x y'' + ( 1 − x ) y' − y   =   0, x > 0 
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Case 3:  r1 and r2 differ by an nonzero integer,  r1  >  r2   

[Example] x2 y'' + x y' + 






 x2 − 

 1 
  4     y   =   0  (Bessel's equation of order 1/2) 

[Solution] Put       y   =   xr ∑
m=0

∞

  am xm   =    ∑
m=0

∞

 am xm+r 

The differential equation becomes 

 ∑
m=0

∞

  am ( r + m ) ( r + m − 1 ) xr+m-2  +  ∑
m=0

∞

 am ( r + m ) xr+m-2 −  ∑
m=0

∞

   
 1 
4 am xr+m-2  + ∑

m=0

∞

  am xr+m   =   0 

After substituting ∑
m=2

∞

  am-2 xr+m-2 for the last term of the lhs of the above equation, we have 

a0 




 r ( r − 1 ) + r −  

 1 
  4     xr-2 +  a1 




 r ( r + 1 ) + ( r + 1 ) − 

 1 
  4     xr-1+  ∑

m=2

∞

    4    + am-2  








 am 






 ( r + m ) ( r + m − 1 ) + ( r + m ) − 

 1 
 xr+m-2  =  0 

Thus, we have the indicial equation: 

 r ( r − 1 ) + r − 
 1 
  4     =  2 1

4
r − = 0              or r1  =  

 1 
  2    r2   =  −    

 1 
  2  

Note that r1 − r2  =  1  is an integer!!! 

Note also that, when m=1,  ( ) ( )2 2 2
1 1 1 1 11 1 0
4 2 2 2 4

r r r   + + + − = − + − =  
  

! 
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For  r1  =  
 1 
  2      ⇒     2 a1 x-1/2 +  ∑

m=2

∞

  [ ] am ( m2 + m ) + am-2   x  
m - 

 3 
2   = 0 

∴ a1  =  0   and   am  =  −  
am-2

 m ( m + 1 )     for  m  ≥ 2          ⇒ y1   =     
 sin x 

x 

 

For  r2  =  −  
 1 
  2   , both a0 and a1 are arbitrary! 

 ∑
m=2

∞

   [ ] am ( m2 − m ) + am-2  x
m – 

 5 
2    =  0 

∴ am   =   –  
am-2

  m ( m − 1 )    

or a2   =   − a0/2!  a4   =   a0/4!  a6   =   − a0/6! 

 a3   =   − a1/3!  a5   =   a1/5! . . . 

⇒ y2   =   
1

 x 
  ( a0 cos x  + a1 sin x )         ∴The linearly independent solution is    

cos x
 x 

(Alternatively, the linearly independent solution y2 can also be obtained by reduction of order method.) 

⇒ y   =   A  
sin x
 x 

   +  B    
cos x
 x 

 ⇒ Note that k=0 in this case! 

 



Series - 32 

[Example] x2 y''  +  x y'  +  (x2 − 1) y   =   0  (Bessel's equation of order 1) 

[Solution] Letting     y   =   xr ∑
m=0

∞

  am xm, we have 

a0 [ r ( r − 1 ) + r  − 1 ] xr-2  +  a1[ r ( r + 1 ) + ( r + 1 ) − 1] xr-1 +  ∑
m=2

∞

   ( am ( ( r + m ) ( r + m − 1 ) + ( r + m ) − 1 ) − am-2 ) xr+m-2=  0 

∴ The indicial equation is     r ( r − 1 ) + r − 1   =   r2 − 1   =   0     ∴     1 21           1r r= = −  

( ) ( )
1 2

2 2 2

2
1 1 1

0
1 0

r r
r r r

k

− =

+ + + − = − ≠

≠∴

 

 

For  r  =  1,  we have      3 a1  +  ∑
m=2

∞

   ( am ( m2 + 2 m ) + am-2 ) xm-1   =   0 

∴ a1   =   0     and      am   =   −  
am-2

  m  ( m + 2 )    for  m ≥ 2 

⇒ y1(x)   =   x 








 1 − 
1

  1! 2!  




 x 

2
2
 + 

1
  2! 3!  




 x 

2
4
  − . . .   

 

 



Series - 33 

For  r   =  − 1,  we have      − a1 x-2  +  ∑
m=2

∞

  { am ( m2 − 2 m ) + am-2 } xm-3   =   0 

⇒ a1   =   0   and     m ( m − 2 ) am  =  - am-2 for m ≥ 2 

But for m  =  2,  we have  0  =  a0  which is not true.   Thus we can not obtain the second linearly independent solution by 

setting  y =  xr ∑
m=0

∞

  am xm    with r   =  − 1. 

                        Approach 1 

From the theorem, we need to directly assume that the second solution is of the form: 

 y2   =   k y1 lnx  + xr2 (A0 + A1 x + A2 x2  + . . . ) =   
 1 
4  y1 ln x  −  

 1 
2    x-1  +   

x
 16   +  . . .  (Exercise!) 

Approach 2 

Note that the second linearly independent solution can also be obtained by the method of reduction of order (Exercise!): 

 y2   =   u y1      ⇒   
 u'' 
u'    =   

 − 2 y1' 
 y1

  −  
 1 
x    =   

 − 3 
    x   +  

 x 
  2     +  . . . 

 ∴ ln u'   =   − 3 ln x  +  
x2

  4      +  . . .      

⇒    u'   =   x-3 exp 








 
x2

  4     + . . .     =   x-3 +  
1
 4  x-1  +  . . .    or u   =   –  

1
 2   x

- 2  +   
1
 4  ln x  +  . . . 

[Exercise] x y'' + (x − 1) y'  − 2 y   =   0 
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4 Legendre's Equation 

4.1 Legendre's Differential Equation 

 

( 1 − x2 ) y''  −  2 x y'  +  n ( n + 1 ) y   =   0 

 

where n  is any non-negative real number.  Since n(n+1) is unchanged when n is replaced by –(n+1), then  

(1) solution of n = n’ (where 0n′ ≥ ) is the same as n = - (n’+1);  

(2) solution of n = - n” (where 1n′′ ≥ ) is the same as n = n”-1.  

The above equation can be written as        y''  −  
2 x

  1 − x2  
  y'  +  

 1 − x2 
  

  n ( n + 1 )  
 y   =   0 

But 
1

 1 − x2 
   = 1  +  x2  +  x4  +  . . .                  which is analytic at x  =  0 (regular point!).   

Therefore, we can solve the above equation by assuming 

y   =   ∑
m=0

∞

  am xm 

 

 

 



Series - 35 

 

⇒  Recurrence formula 

am+2   =   −  
 ( n − m ) ( n + m + 1 ) 

 ( m + 2 ) ( m + 1 )   am ,   m   =   0, 1, . . .  (Exercise!) 

or a0 a1 

 a2   =   −  
  n ( n + 1 )  

 2!   a0 a3   =   −  
  ( n − 1 ) (n + 2 )  

 3!   a1 

 a4   =   
  ( n − 2 ) n ( n + 1 ) ( n + 3 )  

4!   a0  

  a5   =   
  ( n − 3 ) ( n − 1 ) ( n + 2 ) ( n + 4 )  

5!   a1 

 . . .  

∴ The general solution is y   =   a0 y1 + a1 y2 

where  

2 4 6
1

( 1) ( 2)( 1)( 3) ( - 2)( - 4)( 1)( 3)( 5)( ) 1
2! 4! 6!

n n n n n n n n n n n ny x x x x+ − + + + + +
= − + − +  

3 5 7
2

( 1)( 2) ( 1)( 3)( 2)( 4) ( 1)( 3)( 5)( 2)( 4)( 6)( )
3! 5! 7!

n n n n n n n n n n n ny x x x x x− + − − + + − − − + + +
= − + − +  
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If n  =  0, 1, 2, . . . (non-negative integer), then one of the above two solutions is a polynomial! 

2 4 6
1

( 1) ( 2)( 1)( 3) ( - 2)( - 4)( 1)( 3)( 5)( ) 1
2! 4! 6!

n n n n n n n n n n n ny x x x x+ − + + + + +
= − + − +  

3 5 7
2

( 1)( 2) ( 1)( 3)( 2)( 4) ( 1)( 3)( 5)( 2)( 4)( 6)( )
3! 5! 7!

n n n n n n n n n n n ny x x x x x− + − − + + − − − + + +
= − + − +  

( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 1

1
2

2 2

0 2,4,6,
2 4 61 1 1 1

1 3 5 1
1 1,3,5,

2 4 6 ( 1)1 1 1 1
1 3 5

n

n

n n
ny y

n
n n

ny y
n

−

= =
⋅ ⋅

= = −
⋅ ⋅ −

= =
⋅ ⋅ −

= = −
⋅ ⋅













 

Thus, let 

 y   =   c1 Pn(x) + c2 Qn(x) 

where Pn(x)  =  Legendre polynomials [It is desirable that Pn(1)  =  1] 
  

Qn(x)  =  Legendre functions of the second kind converges in -1<x<1, but Qn(±1)  =  unbounded (This is due to the fact 
that the Legendre equation is not analytic at x=+1 and x=-1!) 
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4.2 Legendre Polynomials Pn(x) 

 

Since ( )( )
( )( )2

1
2 1m m

n mn
a a

m
m

m+

+ +
= −

+ +
−

    for m   =   0, 1, . . . 

If n  =  non-negative integer, 

 am+2  =  0  for m  =  n          2 0na +⇒ =  

i.e.,  an+2  =  an+4  =  an+6   =   . . .    =   0 

when n   =   even,      y1  ⇒  polynomial of degree n 
 n   =   odd,        y2  ⇒  polynomial of degree n 
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These polynomials, each divided by an appropriate constant, are called the Legendre polynomials Pn(x), which have the value Pn(1) = 1.  
In other words, let  

1

1

2

2

( ) when  is even
(1)

( )
( ) when  is odd
(1)

n

y x n
y

P x
y x n
y


= 



 

 Or, we can choose the coefficient of xn in the Legendre polynomials Pn(x)  as 

 an   =   1 if   n   =   0 

 an   =   
 ( 2 n ) !

 2n ( n ! )2 
1 3 5 (2 1)

!
n

n
⋅ ⋅ −

=
  ;     if   n   =   1, 2, . . . 

Then, we can obtain the other coefficients in Pn(x) with the recurrence formula 

 an-2   =
( 1)

2(2 1) n
n n a

n
−

−
−

=   
− ( 2 n − 2 ) !

 2n ( n − 1 ) ! ( n − 2 ) ! 
  

 . . . 

 an-2m   =   (−1)m 
 ( 2 n − 2 m ) !

  2n m ! ( n − m ) ! ( n − 2 m ) !  
  

Then, the Legendre polynomial of degree n, Pn(x) is given by 

Pn(x)   =  ∑
m=0

M

   ( − 1 )m 
  2n m ! ( n − m ) ! ( n − 2 m ) ! 

 
 ( 2 n − 2 m ) !

 xn-2m         where M   =   
when  is even

2
1 when  is odd

2

n n

n n



 −
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[Example] 

( ) ( ) ( ) ( )2 3 4 2 5 3
0 1 2 3 4 5

1 1 1 1( ) 1,      ( ) ,      ( ) (3 1),     ( ) (5 3 ),      35 30 3 ,      63 70 15
2 2 8 8

P x P x x P x x P x x x P x x x P x x x x= = = − = − = − + = − +  

 

In all cases, Pn(1)   =   1,   and  Pn(−1)   =   (−1)n. 
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4.3 Legendre Functions of the Second Kind, Qn(x) 

 ( 1 − x2 ) y'' − 2 x y' + n ( n + 1 ) y   =   0,      n   =   0, 1, 2, . . .      ⇒ y   =   c1 Pn(x) + c2 Qn(x) 

The power series Qn(x) can be obtained by the method of reduction of order: 

Let 2 1 2

1 2 1

(1) ( ) when  is odd and ( ) is a polynomial
( ) ( ) ( )

y (1) ( ) when  is even and ( ) is a polynomialn n

y y x n y x
Q x u x P x

y x n y x
−

= = 


 

[ ]
[ ]

2

2

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 2 ( ) ( ) ( ) ( )

(1 ) ( ) 2 ( ) ( 1) ( )

(1 ) ( ) ( ) 2 ( ) ( ) ( )

( ) ( ) ( 1) ( )

( )

            - 2 ( ) ( ) (

n n

n

n

n

n n n n

n n

n n

n n

n

Q x u x P x u x P x
Q x u x P x u x P x u x P x

x Q x xQ x n n Q x

x u x P x u x P x

x u x P

u x P x

u x P x n n u x P xx

′ ′ ′= +
′′ ′′ ′ ′ ′′= + +

′′ ′− − + +

′′ ′ ′= − + +

+

′

′ ++

′

′

[ ]2

2 2

2

2
2 2

(1 ) ( ) ( ) 2 ( ) ( ) 2 ( ) ( )

(1 ) ( ) ( ) ( ) 2(1 ) ( ) 2 ( ) 0

( )( ) 22
( ) ( ) 1

ln 2ln ( ) ln(1 ) '    
[ ( )]

(

)

1

1

)

(

)

(

n n n

n n n

n

n

n

n
n

n

x u x P x u x P x xu x P x

x u x P x u x x P x xP x

P xu x x
u x P x x

A
u P x x

dxu

c u

x

P x x

A

′′ ′ ′ ′= − + −

′′ ′ ′ = − + − − = 

′ ′′ −
= − + ′ − 

′ ′ = − + − +

=

⇒ =  −

−

( ) ( ) ( ) ( ) ( )

2 2

2 2

)[ ( )]

(1 )[ ( )]

n
n

n n n n n n
n

B
x P x

dxQ x u x P x A P x B P x
x P x

+

= = +
−

∫

∫

 



Series - 41 

If 0n = , then  

0

0 0 02

( ) 1

( )
1

P x
dxQ x A B

x

=

= +
−∫

 

Also, 

0 1 2

0 1 2

(0) (1) (0) 0

(0) (1) (0) 1

Q y y

Q y y

= =

′′ = =
 

Thus 

Q0(x)      =   
1
 2   ln  







 

 1 + x 
 1 − x  =   x + 

x3

  3      +   
x5

  5     + . . . 

 
If 1n = , then 

1

1 1 12 2

( )

( )
(1 )

P x x
dxQ x A x B x
x x

=

= +
−∫

 

Also, 
1 2 1

1 2 1

(0) (1) (0) 1

(0) (1) (0) 0

Q y y

Q y y

= − = −

′′ = − =  

Thus, 

1 0
1 1( ) ln 1 ( ) 1
2 1

xQ x x xQ x
x

+
= − = −

−
  =    x 









 x + 
x3

  3     +  
x5

  5     + . . .     − 1 

Note the most important property of Qn(x) is that   Qn(±1)   =   unbounded!! 
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4.4 Some Important Properties of Pn(x) 

(1) Values of Pn(x) 

 Pn(1)   =   1 
 Pn(−1)   =   (−1)n 
 Pn(−x)   =   (−1)n Pn(x) 
 n  :  even,  Pn(x) : even function†  
 n  :  odd, Pn(x) : odd function 

 Pn'(−x)   =   (−1)n+1 Pn'(x) 

(2) Rodrigues' Formula  

 Pn(x)   =   
1

 2n n! 
 
dn 
dxn  [ ( x2 − 1 )n ]           

[Exercise]  Show that P2(x)   =   
1

  2   ( 3 x2 − 1 )  

(3) Generating Function for Legendre Polynomials  

 
1

  1 − 2 x t  +  t2  
   =     ∑

n=0

∞

 Pn(x) tn 

(4) Recurrence Formulas  

(i) ( n + 1 ) Pn+1(x)   =   ( 2 n + 1 ) x Pn(x) − n Pn-1(x),  n  =  1, 2, . . . 
(ii) Pn+1'(x) − Pn-1'(x)   =   ( 2 n + 1 ) Pn(x) 

[Exercise]  Starting with P0 = 1, P1 = x, derive P2, P3, P4, . . . according to the recurrence formulas. 
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(5) Integrating Formulas  

(i) ⌡⌠
-1

1

 Pn
2(x) dx   =   

2
 2 n + 1    n   =   0, 1, . . . 

(ii) ⌡⌠
-1

1
  Pm(x) Pn(x) dx   =   0,       m ≠ n,  m, n ∈ N 

(6) Solution to 

 
d2y
 dθ2 

   +  cotθ  
dy
 dθ   + n ( n + 1 ) y   =   0,   n   =   0, 1, . . . 

is y   =   c1 Pn(cosθ) + c2 Qn(cosθ) (x= cosθ and  Exercise! ) 
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Derivation of (4)(i) 
 

( )

( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

1
2

0
1 3

12 2

1
1

12

1

2 1

0 1

1 1 1

1

Let   , 1 2

1 2 2
2

1 2

Coefficients of 

1 (

 
2 1

2

1

1)n

n
n

n

n
n

n

n
n

n

n n
n n

n n
n

n n n n

n

n

U x t xt t

U P x t

U U x t nP x t
t

x t U U nP x t

x t P x t xt t nP x t

t
xP x P x n

n P

P x nxP x n P x

x n xP x

∞−

=

∞− − −

=

∞− −

=

∞ ∞
−

= =

− −

+

+

= − +

=

∂
= − − + =

∂

− =

+ =

− = − +

⇒

− = + − −

+

+

∑

∑

∑

∑ ∑

( )1nnP x−−
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Derivation of (4)(ii) 

( )

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

2

1
2

0
1 3
2 2

1
1
2

1

2

0 1
1

1 1

Let   , 1 2

1 2

Coefficients of  
                            (*)

Differentiating 
2

n
n

n

n
n

n

n
n

n

n n
n n

n
n

nn

n

n n

U x t xt t

U P x t

U tU P x t
x

tU U P x t

t P x t xt t P x t

t
P x P x P xxx P

∞−

=

∞− −

=

∞−

=

∞ ∞

= =

+

+ −

= − +

=

∂ ′= =
∂

′=

= − +

⇒
′ ′= − +′

∑

∑

∑

∑ ∑

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 1

1

1 1

1

(4)(i) wrt ,we have
1 (2 1) (2 1)

Substituting (*) into the above equation yields

2 1 2(2 1)

    2

(2 1) 2

1

n

n n n

n n n

n n n

n n n

x
n P x n P x n nP x

P x P x n

n P x n P

xP x

P x P x P x

P x

x n nP x

+ −

−+ −

+

+

−

′ ′+ = + + + −

′ ′+ = + + + − 

′

′ ′+ −

−⇒ ′ ′ = +
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Selecting the last coefficient in a Legendre polynomial 

 

Let an be the coefficient of xn in Pn(x), i.e., its last coefficient, and an+1 be the coefficient of xn+1 in Pn+1(x), i.e., its last coefficient 

(n+1) Pn+1 - (2n+1) x Pn + n Pn-1   =   0 

The coefficient of xn+1 in LHS (a polynomial of degree n+1) of the above equation is given by 

 (n+1) an+1 - (2n+1) an=0             ∴ an+1   =   
(2n+1)
 n+1   an 

∴     an   =   
2n-1
 n   an-1   =    n-1  

 2n-1 
 n  

2n-3
 an-2   =   ... 

          = ( )( ) ( )( )( )2 1 2 3 5 3 1
!

n n
n

− − 

  a0 

         =  
(2n)!

 2n(n!)2 
  ao 

But a0 is the coefficient of x0 in P0(x)   =   1, we have a0   =   1 

∴ an   =   
(2n-1)(2n-3)...(5)(3)(1) 

 n!   
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5 Bessel's Equations 

5.0 Gamma Function, Γ(α) --- Appendix  

Definition: 

Γ(α)  ≡  ⌡⌠
0

∞

 e-t t
α-1 dt  

Properties: 

(i) Γ(α+1)   =   α Γ(α) 

Γ(α+1)   =   ⌡⌠
0

∞

 e-t t
α
 dt   =  [ − e-t t

α
 ]  

∞
 
0
  +  α ⌡⌠

0

∞

  e-t t
α-1 dt   = α Γ(α) 

(i)' Γ(α)   =   
Γ( α + n )

 α ( α + 1 ) . . . ( α + n − 1 )    ,  n ∈ N 

(ii) Γ(1)  =  1 (from definition!)     Γ(2)  =  1,   Γ(3)  =   2 !, . . .  

 Γ(n)  =   ( n − 1 ) !,   n ∈ positive integer  N 

(iii) Γ(1/2)   =   π     (Exercise!  Hint:  let t1/2 = u,  dt = 2u du) ;  

Γ(3/2)   =   
 π 

2   

(iv) Γ(−n)   =   ± ∞          n ∈ N 

v) Plots of Γ(x): 
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5.1 Bessel's Differential Equation 

x2 y'' + x y' + ( x2 − ν2 ) y   =   0 

where ν ≥ 0.  Note that in this differential equation, p(x) = x/x2 = 1/x is not analytic at x = 0, thus we have to assume 

y   =   ∑
m=0

∞

  am xr+m 

⇒  Indicial Equation: 

( r + ν ) ( r − ν )   =   0        or r1 = ν      and      r2 = − ν 
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(i) Solution for r1 = ν 

 a1   =   0 m = 1 

 am   =   
− 1

 ( m + 2 ν ) m   am-2 m ≥ 2 

thus, a1   =   a3   =   a5   =   . . .   =   0 

and a2   =   − 
a0

 22 ( ν + 1 ) 
  

 a4   =   
a2

 4 ( 2 ν + 4 )    =    
a0

 24 2 ! ( ν + 1 ) (ν + 2 ) 

 . . .  

 a2m   =   
(−1)m a0

 22m m ! ( ν + 1 ) ( ν + 2 ) . . . ( ν + m ) 
       ;   m  =  1, 2,  . . . 

∴ y1(x)   =   a0 x
ν
  +  a0 x

ν
 ∑
m=1

∞
 

(−1)m x2m

  22m m! ( ν + 1 ) ( ν + 2 ) . . . ( ν + m )  
  

We let 

 a0   =   
1

 2
ν
 Γ( ν + 1 ) 

  

⇒ y1(x)   =   Jν(x)   =     x
ν
 ∑
m=0

∞
 

(−1)m x2m

  22m+ν
 m! Γ( ν + m + 1 )  

  

  =  Bessel Function of the First Kind of Order ν 
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For ν = n ≥ 0, n : integer 

 Jn(x)   =   xn ∑
m=0

∞
 

(−1)m x2m

  22m+n m! ( n + m ) !  
  

 

 Note that 

 J0(0)   =   1 
 J1(0)   =   J2(0)   =   . . .   =   0 
 J0(∞)   =   J1(∞)   =   . . .   =   0 
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(ii) Solution for r2 = − ν 

 r1 − r2   =   2ν 


 integer

 
non-integer

  

Recall that  

 y2   =    k y1(x) lnx + xr2 (A0 + A1 x + A2 x2 + . . . )  

 k  =  1,     if      r1 − r2   =   0 

 k may be zero if r1 − r2 ≠ 0, but r1 − r2 ∈ I 

  

 (a) x2 y'' + x y' + [x2 − (1/2)2 ] y   =   0 

r1   =   
1
 2   , r2    =   −   

1
 2   , r1 − r2   =   1,  but     y1   =   

sin x
 x 

   ,  y2   =    
1

 x 
 (a0 cos x + a1 sin x ) , 

In this case, k = 0. 

(b) x2 y'' + x y' + ( x2 − 1 ) y   =   0 

r1 = 1,  r2 = − 1,  r1 − r2 = 2,  and     y1   =   x  ∑
 

 
  am xm  ;  y2   =    

1
 4  y1 ln x − 

1
 2   x

-1 +  . . . 

In this example,  k ≠ 0. 

 

 



Series - 55 

 

In general, substitute r1 = ν into y1 = ∑
m=0

∞

  am xm+r, we have 

 y1 =  Jν(x) 

Similarly, substitution of r2 = − ν  into y2   =   ∑
m=0

∞

  am xm+r gives 

 y2 = J-ν(x) 

Are Jν(x) and J-ν(x) linearly independent? 

 

 

Case 1  ν ∉ N 

Jν(x) and J-ν(x) are linearly independent.  In this case, the general solution of the Bessel differential equation is 

 y   =   c1 Jν(x) + c2 J-ν(x),                ν ∉ N 
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Case 2  ν ∈ N    { 0, 1, 2, ...} 

It can be shown that (Exercise!  Also read p. 230, theorem 2 of the textbook.) 

 J-n(x)   =   (−1)n Jn(x) 

i.e., J-n and Jn are linearly dependent, we need to find the second linearly independent solution by assuming (or by 
method of reduction of order) 

 y2   =    k (ln x) y1  +  xr2 (A0 + A1 x + A2 x2 + ... ) ,  x > 0 

It yields (try this as an exercise!) 

 y2   =   Jn(x) ln x − 
1
 2  ∑

m=0

n-1
 
( n − m − 1 ) !

 m !  ( x
 2 )

2m-n
  

  − 
1
 2  

  hn  
 n!  ( x

 2 )
n
  

  − 
1
 2  ∑

m=1

∞

   (−1)m[ hm + hm+n ]  
  m ! ( n + m ) !    ( x

 2 )
2m+n

   

where  hn   =   1 + 
1
 2   +  

1
 3  + . . . + 

1
 n   
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It is customary to replace y2 by the linear combination of solutions  

 Yn(x)   =   
2

 π   { y2(x) + ( γ - ln 2 ) Jn(x) },   n   =   0, 1, 2, ... 

where γ  = lim
n→∞

  ( hn − ln n )   =  0.5772156649  =  Euler Constant.   

Yn is called the Bessel function of the second kind of order n or the Neumann's function of order n. 

Thus, the general solution for ν  = n ∈ N is  

 y(x)   =   c1 Jn(x) + c2 Yn(x) 

Plots of Y0 and Y1 vs. x can be found in Fig. 105, p. 231 of the textbook.  Note that for all integer n, Yn(0)  =  − ∞  and 
Yn(∞)   =   0. 

The function Yn can be extended to all real numbers ν ≥ 0 by letting 

 Yν(x)   =   
1

 sinνπ  [ Jν(x) cos νπ − J-ν(x) ],       ν ≠ 0, 1, 2-0 

 Yn(x)   =    lim
ν→n

    Yν(x) 

In general, the general solution of Bessel's equation of order ν (regardless whether ν is integer or not) can be written as 

 y(x)   =   c1 Jν(x) + c2Yν(x) 
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[Example]   x2 y’’ + x y’ + ( x2 − 1/4 ) y   =   0 

[Solution] y   =   c1 J
1/2

(x)  + c2 Y
1/2

(x)  

or y   =   c1 J
1/2

(x)  + c2 J-1/2
(x)  

(You have to specify what J1/2, Y1/2, J-1/2 are in your answer.) 

[Example] x2 y’’ + x y’ + ( x2 − 1 ) y   =   0 

[Solution] y   =   c1 J1(x) + c2 Y1(x) 

but not y   =   c1 J1(x) + c2 J-1(x) 

since J1(x) and J-1(x) are linearly dependent! 
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5.2 Bessel’s Equations of Order ν with Parameter λ 

 x2 y'' + x y' + ( λ2x2 − ν2 ) y   =   0 

Let t  =  λ x 

 dy/dx   =   λ  dy/dt,  d2y/dx2   =   λ2 d2y/dt2 

∴ t2 
d2y
 dt2 

   +  t  
dy
 dt  + ( t2 − ν2 ) y   =   0 

⇒ y   =   c1 Jν(t) + c2 Yν(t) 

or y   =   c1 Jν(λx)  + c2 Yν(λx) 

If ν is not a positive integer or 0, then the solution can be also written as 

 y   =   c1 Jν(λx)  + c2 J-ν(λx) 
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5.3 Modified Bessel's Functions  

 x2 y'' + x y' − ( x2 + ν2 ) y   =   0 (1) 

Note that the solution of x2 y'' + x y' + ( λ2x2 - ν2 ) y   =   0  is given by 

 y   =   c1 Jν(λx) + c2 Yν(λx) 

In this case, λ = i,   λ2 =  − 1, thus the solution of (1) is 

 y   =   c1 Jν(ix) + c2 Yν(ix) 

But Jν(ix)   =   ∑
m=0

∞
 

(−1)m (ix)
ν+2m

   2
ν+2m m ! Γ( ν + m + 1 )   

  

  =  i
ν
 ∑
m=0

∞
 

x
ν+2m

   2
ν+2m m ! Γ( ν + m + 1 )   

  

∴ we let 

 Iν(x)  ≡  i-ν Jν(ix)   =  Modified Bessel's Function of the First Kind of Order ν 

If ν is not an integer, the general solution of  

 x2 y'' + x y' − ( x2 + ν2 ) y   =   0 

is given by 

 y   =   c1 Iν(x) + c2 I-ν(x) 
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If ν = n, an integer, then 

 In(x)   =   I-n(x) 

We now define 

 Kν(x)  ≡ 
π
 2  

   I-ν(x) − Iν(x)   
sinνπ   

  =  Modified Bessel's Function of the second kind with order ν 

For ν   =   n,  Kn(x)   =    lim
ν→n

  
 I-ν(x) − Iν(x) 

sinνπ   

In summary, the general solution of 

 x2 y'' + x y' − ( x2 + n2 ) y   =   0 

is  y   =   c1 In(x) + c2 Kn(x) 

and that the general solution of  

 x2 y'' + x y' − ( x2 + ν2 ) y   =   0       ,  ν ∉ I 

is given by 

 y   =   c1 Iν(x) + c2 I-ν(x) 

or y   =   c1 Iν(x) + c2 Kν(x) 

Note that In(∞)   =   ∞      Kn(∞)   =   0 
 I0(0)   =   1   Kn(0)   =   ∞ 
 I1(0)   =   0 



Series - 65 

5.4 Equations Solvable in Terms of Bessel Functions   

 

 

 

(i) If ( 1 − a )2 ≥ 4 c and if neither d, p nor q is zero,  then (except the Euler Equation), 

 x2 y'' + x ( a + 2 b xp ) y' + [ c + d x2q + b ( a + r − 1 ) xp + b2 x2p ] y   =   0 

has the complete solution 

 y   =   x
α
 e

-βxp  [ c1 Jν(λxq) + c2 Yν(λxq) ] 

where 

 α   =   
 1 − a  

 2     ,   β   =     
b

 p 

 λ   =   
|d|
 q        ,   ν   =   

  ( 1 − a )2 − 4 c  
 2 q   

Note p=r and q=s in the other course notes. 

If d < 0,  Jν and Yν are to be replaced by Iν and Kν, respectively. 
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(ii) If ( 1 - r )2 ≥ 4 b, a ≠ 0 and if either r - 2 < s or b = 0, then (except for Euler Equation) 

 ( xr y’ )’ + ( a xs + b xr-2 ) y   =   0 

has a complete solution 

 y   =   x
α
 [ c1 Jν(λxr) + c2 Yν(λxr) ] 

where 

 α   =   
  1 − r  

 2        ,          γ   =     
  2 − r + s  

2

 λ   =   
2 |a|

  2 − r + s     ,   ν   =   
   ( 1 − r )2 − 4 b   

 2 − r + s   

If a < 0, Jν and Yν are to be replaced by Iν and Kν, respectively. 
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(iii)  x2 y’’ + a x y’ + ( b xc + d ) y   =   0 

⇒ y   =   c1 x
α
 Jν(λx

β
)  + c2 x

α
 Yν(λx

β
) 

where 

 α   =   
  1 − a  

2   β   =     
c

 2 

 λ2   =   
  4 b  

c2   ν2   =   
c2

  4 ( α2 − d )  
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[Example]   x2 y’’ + a x y’ + ( b xc + d ) y   =   0 

[Solution] Let y   =   u x
α
 

 y’   =   α u x
α-1 + u’ x

α
 

 y’’   =   α ( α − 1 ) u x
α-2 + α u’ x

α-1 +  α u’ x
α-1 +  u’’ x

α
 

                        =   u’’ x
α
 + 2 α x

α-1 u’  +  α ( α − 1 ) u x
α-2 

Thus, the differential equation becomes 

 x2 ( u'' x
α
 + 2 α x

α-1 u' + α ( α − 1 ) u x
α-2 ) 

      +  a x ( α u x
α-1 + u' x

α
 ) + ( b xc + d ) u x

α
   =   0 

or x2 u'' +  ( 2 α + a ) x u' + {  b xc + α ( α − 1 ) + a α + d } u   =   0 

Compare the above equation with the standard form of the Bessel's differential equation 

 x2 y'' + x y' + ( λ2x2 − ν2 ) y   =   0 

we set 2 α + a   =   1 

⇒ x2 u'' + x u' + {  b xc + d − α2 } u   =   0 

Next, we set 

 z2   =   xc   or  z   =   xc/2 

then u'   =   
du
 dx    =  dx  

du
dz 

dz
 =  2  

du
dz 

c
 x   

 c2 - 1
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 u''   =   
d 
dx 

du
dx   =  

d 
dx 









 
du
dz 

c
2 x

 c2 - 1
   

  =  
d2u

 dxdz  
c

 2   x
 c2 - 1

   +   2  




 

c
2 − 1  

du
 dz  

c
 x   

 c2 - 2
 

  =  
d2u
 dz2 

 






c

 2 

2

  x  
 2  

c
2 - 1

   +     
du
 dz  

c
 2  




 

c
2 − 1   x

 c2 - 2
   

After substitution u' and u'' into the differential equation, we have 

 z2 
d2u
 dz2 

   +  z  
du
 dz   +  









  
 4 b 
 c2 

 z2 − 
 4 ( − d + α2 )  

c2 
   u   =   0 

Again, compare with the standard Bessel's differential equation, we can set 

 λ2   =   
4 b 
c2 

     ;       ν2   =   
c2

  4 ( α2 − d )  
  

and the solution is thus 

 u   =   c1 Jν(λz)  +  c2 Yν(λz) 

but y   =   u x
α
  ,  z   =   xc/2   =   x

β
 

∴ y   =   c1 x
α
 Jν(λx

β
)  +  c2 x

α
 Yν(λx

β
) 

where α   =   
 1 − a 

 2   ( a   =   1 − 2 α ) 
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 β   =   
  c  
2   

 λ2   =   
 4 b 

c2   ( λ2 β2   =   b ) 

 ν2   =   
  4 ( α2 − d )  

c2    ( α2 − ν2 β2   =   d ) 

 

 

[Exercise]   Try to use the substitutions 

 y   =   u x1/2  and   z   =   x1/2 

to find the solutions (in terms of Bessel's functions) to the following differential equation 

 x y'' + y   =   0 

[Answer] y   =   c1 x  J1( 2  x )  +  c2 x  Y1( 2  x ) 
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5.5 Some Important Properties of Bessel Functions 

(A) Identities 

(1) 
 d[ x

ν
 Jν(x) ] 

dx    =  x
ν
 Jν-1(x) 

(2) 
 d[ x-ν Jν(x) ] 

dx    =  - x-ν Jν+1(x) 

(1)Y 
 d[ x

ν
 Yν(x) ] 
dx    =  x

ν
 Yν-1(x) 

(2)Y 
 d[ x-ν Yν(x) ] 

dx    =  − x-ν Yν+1(x) 

(1)I 
 d[ x

ν
 Iν(x) ] 

dx    =  x
ν
 Iν-1(x) 

(2)I 
 d[ x-ν Iν(x) ] 

dx    =  x-ν Iν+1(x) 

(1)K 
 d[ x

ν
 Kν(x) ] 
dx    =  − x

ν
 Kν-1(x) 

(2)K 
 d[ x-ν Kν(x) ] 

dx    =  − x-ν Kν+1(x) 

(3) Jν-1(x) + Jν+1(x)   =   
 2 ν 

x   Jν(x) 
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(4) Jν-1(x) - Jν+1(x)   =   2 Jν' (x) 

(5) ⌡⌠
 

 
  x

ν
 Jν-1(x) dx   =   x

ν
 Jν(x) + C 

(6) ⌡⌠
 

 
  x-ν Jν+1(x) dx   =   − x-ν Jν(x) + C 

(7) ⌡⌠
 

 
  Jν+1(x) dx   =    ⌡⌠

 

 
 Jν-1(x) dx − 2 Jν(x) 
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[Example] Express J4(λx) in terms of J0(λx) and J1(λx) 

[Solution] It is known that 

( ) ( ) ( )1 1
2J x J x J x

xν ν ν
νλ λ λ

λ− ++ =  

∴ ( ) ( ) ( )1 1
2J x J x J x

xν ν ν
νλ λ λ

λ+ −= −  

⇒ J4(λx)   =   
6

 λx   J3(λx) − J2(λx) 

J3(λx)   =   
4

 λx   J2(λx) − J1(λx) 

J2(λx)   =   
2

 λx   J1(λx) − J0(λx) 

⇒ J4(λx)   =   






 

48
  λ3 x3  

 − 
8

  λ x     J1(λx) - 






 

24
  λ2 x2  

 − 1   J0(λx) 
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[Exercise] Show that 

⌡⌠
 

 
  x J0(x) dx   =   x J1(x) + C 

( ) ( )1 0
d xJ x xJ x
dx

=    

⌡⌠
 

 
  J1(x) dx   =   - J0(x) + C 

( ) ( )0
1

dJ x
J x

dx
= −  

 

( ) ( )1
d x J x x J x
dx

ν ν
ν ν

− −
+  = −   
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( ) ( )1
d x J x x J x
dx

ν ν
ν ν

− −
+  = −   

[Example] Evaluate ⌡⌠  J3(x) dx 

[Solution] ⌡⌠  J3(x) dx   =    ⌡⌠ x2 [ x-2 J3(x) ] dx 

                           ⇓        ⇓ 
                             u        dv 

u   =   x2    ;    dv   =   x-2 J3(x) dx   =   d( − x-2 J2(x) ) 

2=ν  

Integration by parts: 

⌡⌠  J3(x) dx   =   − x2 ( x-2 J2(x) ) +  ⌡⌠ x-2 J2(x) dx2 

=  − J2(x) + ⌡⌠  2 x-1 J2(x) dx     1=ν  

=  − J2(x) - 2 x-1 J1(x) + C 
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[Example] 
⌡

⌠

 

 

 
 J2(3x) 

x2   dx  =  
1
 9   ⌡


⌠

 

 
  [ (3x)2 J2(3x) ] 

 dx 
x4    

                                                             ⇓                 ⇓ 
                                                             u             dv 

( ) ( )1
d x J x x J x
dx

ν ν
ν ν −  =          ∴      du   =   (3x)2 J1(3x) 3 dx            v   =   −  

1
 3 x3 

  

∴  
⌡

⌠

 

 

 
 J2(3x) 

x2   dx =  
1
 9  






 − 

 3 J2(3x) 
x  + ⌡⌠ 

1
 3 x3 

 ( 3 x )2 J1(3x) 3 dx   

=  
1
 9  






 − 

 3 J2(3x) 
x  + 3 ⌡⌠  3 x J1(3x) 

dx
x2    

                                     ⇓          ⇓ 
                                      u           dv 

u   =   3 x J1(3x)           ;          dv   =   dx/x2 

( ) ( )1
d x J x x J x
dx

ν ν
ν ν −  =      ∴    du   =   3x J0(3x) 3 dx ;           v   =   −  1/x 

∴ 
⌡

⌠

 

 

 
 J2(3x) 

x2   dx =  
1
 9  








 − 
  3 J2(3x)  

x  + 3 



 -3 J1(3x) + 9 ⌡⌠ J0(3x) dx    

=  −  
  J2(3x)  

 3x   − J1(3x) + 3 ⌡⌠  J0(3x) dx 
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In general, an integral of the form 

⌡⌠  xm Jn(x) dx            m+n ≥  0 

1. completely integrated if m + n = odd, 

2. have ⌡⌠ J0(x) dx  for m + n = even. 
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(B) Behavior Near the Origin 

n   =   0 J0(0)   =   I0(0)   =   1 
 Y0(0)   =   - ∞ 
 K0(0)   =    ∞ 

n   =   1, 2, ... Jn(0)   =   In(0)   =   0 
 Yn(0)   =   - ∞ 
 Kn(0)   =   ∞ 

(C) Asymptotic Behavior for Large x 

 Jn(x)  ≈   
2

πx    cos( x −  
π
 4   −  

 n π 
2   ) 

 Yn(x)  ≈   
2

 π x     sin( x −  
π
 4   −  

 n π 
2   ) 

(D) Bessel Function of Half Integer Order 

 J
1/2

(x)   =   
2

πx    sin x  

 J-1/2
(x)   =   

2
πx    cos x 

 I
1/2

(x)   =   
2

πx    sinh x 
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 I
1/2

(x)   =   
2

πx    cosh x 

(E) Bessel Function of Negative Order,  n ∈ N 

 J-n(x)   =   (−1)n Jn(x) 
 Y-n(x)   =   (−1)n Yn(x) 
 I-n(x)   =   In(x) 
 K-n(x)   =   Kn(x) 
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Summary 

1 f(x)   =   ∑
m=0

∞

   m!   ( x − x0 
f(m)(x0) )m Taylor Series 

When x0  =  0  ⇒  Maclaurin Series 

2 Ratio Test 

 ρ   =   lim
m→∞

 








 
am+1 ( x − x0 )m+1 

am ( x − x0 )m    

3 Analytic Function, Regular Point, Singular Point, etc.  

 y'' + p(x) y' + q(x) y   =   0 

If p(x), q(x) are analytic at x = 0 ⇒ x = 0 is a regular point 

  ⇒ y = ∑
m=0

∞

  am xm 

If p(x), q(x) are not analytic at x = 0  ⇒ singular point 

For x = 0 is a singular point, rewrite the differential equation in the following form: 

 y'' + 
 b(x) 

x   y' + 
 c(x) 

x2   y   =    0 

If b(x), c(x) analytic at x = 0 ⇒ regular singular point 



Series - 81 

  ⇒ y = xr ∑
m=0

∞

  am xm 

If b(x), c(x) not analytic ⇒ irregular singular point 

4 Frobenius Method - Extended Power Series Method 

Any differential equation of the form 

 y'' + 
 b(x) 

x   y' + 
 c(x) 

x2   y   =    0 

where b(x) and c(x) are analytic at x = 0, has at least one solution of the form 

 y   =   xr ∑
m=0

∞

  amxm   =   xr ( a0 + a1x + a2 x2 +  ... ),  a0 ≠ 0 

where r may be any number ( real or complex ). 

Form of the Second Solution 

Case 1:   r1 and r2 differ but not by an integer 

 y1   =   xr1 ( a0 + a1 x + a2 x2 + . . . )  

 y2   =   xr2 ( A0 + A1 x + A2 x2 + . . . )  

Case 2:   r1 = r2 = r,   r  =  
1

  2   ( 1 − b0 )  

 y1   =   xr ( a0 + a1 x + a2 x2 + . . . ) 
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 y2   =   y1 ln x  +  xr (A1 x + A2 x2 + . . . ) 

Case 3:   r1 and r2 differ by a nonzero integer, where r1  >  r2 

 y1   =   xr1 ( a0 + a1 x + a2 x2 + . . . )  

 y2   =   k y1 ln x +  xr2 ( A0 + A1 x + A2 x2 + . . . )  

 where r1 − r2 > 0  and k may be zero. 

Note that in Case 2 and Case 3, the second linearly independent solution y2 can also be obtained by reduction of order 
method ( i.e., by assuming y2 = u y1 ). 
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1. Legendre's Differential Equation  

( 1 - x2 ) y''  - 2 x y'  + n ( n + 1 ) y  =  0 ,  n  =  0, 1, 2, . . . 

 y  =  c1 Pn(x)  +  c2 Qn(x) 

where Pn(x)  =  Legendre polynomials 
 Qn(x)  =  Legendre functions of the second kind 

2. x2 y''  +  x y'  +  ( x2 - ν2 ) y  =  0 

(1) ν ∈ N  ( ν  = n ) 

  y  =  c1 Jn(x)  +  c2 Yn(x) 
  y  =  c1 Jn(x)  +  c2 J-n(x)        ⇐ No! 

(2) ν ∉ N 

 y  =  c1 Jν(x)  +  c2 Yν(x) 
or y  =  c1 Jν(x)  +  c2 J-ν(x) 

Need to specify J and Y . . .  

3. x2 y''  +  x y'  +  ( λ2 x2 - ν2 ) y  =  0 

(1) ν ∈ N  ( ν  = n ) 

  y  =  c1 Jn(λx)  +  c2 Yn(λx) 
  y  =  c1 Jn(λx)  +  c2 J-n(λx)        ⇐ No! 

(2) ν ∉ N 

 y  =  c1 Jν(λx)  +  c2 Yν(λx) 
or y  =  c1 Jν(λx)  +  c2 J-ν(λx) 
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Need to specify J and Y . . . 

4. x2 y''  +  x y'  -  ( x2 + ν2 ) y  =  0 

(1) ν ∈ N  ( ν  = n ) 

  y  =  c1 In(x)  +  c2 Kn(x) 
  y  =  c1 In(x)  +  c2 I-n(x)        ⇐ No! 

(2) ν ∉ N 

 y  =  c1 Iν(x)  +  c2 Kν(x) 
or y  =  c1 Iν(x)  +  c2 I-ν(x) 

Need to specify I and K . . . 

 5. J0, J1, Y0, Y1, I0, I1, K0, K1 之 圖 形 
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